

Environment and Climate Change Canada Environnement et Changement climatique Canada

The Big Leap: Replacing 4D-Var with 4D-EnVar and life ever since

Symposium: 20 years of 4D-Var at ECMWF 26 January 2018

Mark Buehner¹, Jean-Francois Caron¹ and Ping Du²

¹Data Assimilation and Satellite Meteorology Research Section ²Data Assimilation and Quality Control Development Section

- 1. Why would someone consider replacing 4D-Var with anything else?
- 2. Brief overview of current/future operational NWP systems at ECCC
- 3. Scale-dependent ensemble covariance localization applied to global NWP (Caron and Buehner 2017, MWR submitted)
- A new "hybrid" approach for estimating the impact of observations – Forecast Sensitivity Observation Impact (FSOI) (Buehner et al. 2017, MWR EOR)

Environment and Climate Change Canada Page 2 – January-29-18

Background

- Before November 2014, Environment Canada had 2 relatively independent state-of-the-art DA systems
- 4D-Var (Gauthier et al 2007) and EnKF (Houtekamer et al 2009):
 - both operational since 2005
 - both use GEM forecast model and assimilate obs
- 4D-Var used to initialize global deterministic forecasts
- EnKF is used to initialize global ensemble forecasts
- Can the EnKF be used to satisfy all assimilation needs?
- Intercomparison of approaches in carefully controlled context: similar forecast quality from EnKF and 4D-Var, 4D-Var with B_{ens} better (Buehner et al 2010, MWR)

Page 3 - January-29-18

Ensemble-Variational assimilation: EnVar

- 4D-EnVar uses a variational assimilation approach in combination with the already available 4D ensemble background-error covariances from the EnKF
- By making use of the 4D ensembles, 4D-EnVar performs a 4D analysis without the need of the tangent-linear and adjoint of the forecast model
- Hybrid covariances are used in 4D-EnVar by averaging the ensemble covariances with the static climatological covariances
- Currently, our EnKF has 256 members, assimilates perturbed observations, and uses no recentering

Page 4 – January-29-18

4D-EnVar as an alternative to 4D-Var The thinking around 2012

- Overall, 4D-EnVar analysis ~6X faster than 4D-Var on half as many cpus, and higher resolution increments
- Wall-clock time of 4D-Var was close to allowable time limit and model TL/AD did not scale well
- To progress with 4D-Var, significant work required to improve scalability at resolutions used in 4D-Var
- Decision made to try to replace 4D-Var with more efficient 4D-EnVar → if 4D-EnVar is at least as good as <u>current</u> 4D-Var
- Decided to take the risk of replacing 4D-Var and focus efforts on improving the ensemble and its use in the EnKF and 4D-EnVar

Page 5 – January-29-18

EnVar formulation

 In 4D-Var the 3D analysis increment is evolved in time using the TL/AD forecast model (here included in H_{4D}):

$$J(\Delta \mathbf{x}) = \frac{1}{2} (H_{4D}[\mathbf{x}_{b}] + \mathbf{H}_{4D}\Delta \mathbf{x} + \mathbf{y})^{T} \mathbf{R}^{-1} (H_{4D}[\mathbf{x}_{b}] + \mathbf{H}_{4D}\Delta \mathbf{x} - \mathbf{y}) + \frac{1}{2} \Delta \mathbf{x}^{T} \mathbf{B}^{-1} \Delta \mathbf{x}$$

 In EnVar the background-error covariances and analysed state are explicitly 4-dimensional, resulting in cost function:

$$J(\Delta \mathbf{x}_{4\mathrm{D}}) = \frac{1}{2} (H_{4\mathrm{D}}[\mathbf{x}_{\mathrm{b}}] + \mathbf{H} \Delta \mathbf{x}_{4\mathrm{D}} - \mathbf{y})^{T} \mathbf{R}^{-1} (H_{4\mathrm{D}}[\mathbf{x}_{\mathrm{b}}] + \mathbf{H} \Delta \mathbf{x}_{4\mathrm{D}} - \mathbf{y}) + \frac{1}{2} \Delta \mathbf{x}_{4\mathrm{D}}^{T} \mathbf{B}_{4\mathrm{D}}^{-1} \Delta \mathbf{x}_{4\mathrm{D}}$$

- Computations involving ensemble-based \mathbf{B}_{4D} can be more expensive than with \mathbf{B}_{nmc} , but can be easily parallelized

Environment and Climate Change Canada Page 6 – January-29-18

Single observation experiments Difference in temporal covariance evolution

- radiosonde temperature observation at 500hPa
- observation at beginning of assimilation window (-3h)
- with same B, increments very similar from 4D-Var, EnKF
- contours are 500hPa GZ background state at 0h (ci=10m)

0.8

0.6 0.4

0.2

-0.2

-0.4

-0.6

-0.8

150

140

0

Environment and Climate Change Canada

Single observation experiments Difference in temporal covariance evolution

- radiosonde temperature observation at 500hPa
- observation at middle of assimilation window (+0h)
- with same B, increments very similar from 4D-Var, EnKF
- contours are 500hPa GZ background state at 0h (ci=10m)

Environment and

Climate Change Canada

Environnement et

Changement climatique Canada

contour plots at 500 hPa

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

150

140

Single observation experiments Difference in temporal covariance evolution

- radiosonde temperature observation at 500hPa
- observation at end of assimilation window (+3h)
- with same B, increments very similar from 4D-Var, EnKF

65

60

55

50

45

40

35 💾

Climate Change Canada

Environment and

110

120

130

Changement climatique Canada

Environnement et

140

 contours are 500hPa GZ background state at 0h (ci=10m)

4D-Var with Benkf

contour plots at 500 hPa

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

150

0

Experimental results:

Configuration (Buehner et al. 2013, NPG)

4D-EnVar tested in comparison with version of forecast system implemented in operations in Feb, 2013:

- model top at 0.1hPa, 80 levels
- model has ~25km grid spacing
- 4D-Var analysis increments with ~100km grid spacing

4D-EnVar experiments use ensemble members from following configuration of EnKF:

- 192 members every 60min in 6-hour window
- model top at 2hPa, 75 levels
- model ~66km grid spacing \rightarrow EnVar increments ~66km

Page 10 – January-29-18

EnVar uses Hybrid Covariance Matrix Model top of EnKF is lower than GDPS

Bens and Bnmc are averaged in troposphere $\frac{1}{2}$ & $\frac{1}{2}$, tapering to 100% Bnmc at and above 6hPa (EnKF model top at 2hPa)

Therefore, EnVar not expected to be better than 3D-Var above ~10-20hPa

Forecast Results: 4D-EnVar vs. 4D-Var Radiosonde verification scores – 6 weeks, Feb/Mar 2011

Forecast Results: EnVar vs. 3D-Var and 4D-Var

Verification against ERA-Interim analyses – 6 weeks, Feb/Mar 2011

Forecast Results: 4D-EnVar vs. 4D-Var

Verification against ERA-Interim analyses – 6 weeks

North extra-tropics 500hPa GZ correlation anomaly

Forecast Results: 4D-EnVar vs. 4D-Var

Verification against ERA-Interim analyses – 6 weeks, Feb/Mar 2011

Forecast Results: 4D-EnVar vs. 4D-Var

Verification against ERA-Interim analyses – 6 weeks, Feb/Mar 2011

Conclusions

- Comparison of 4D-EnVar with 4D-Var (and 3D-Var):
 - EnVar produces similar quality forecasts as 4D-Var below ~20hPa in extra-tropics (except southern extra-tropical summer), significantly improved in tropics
 - above ~20hPa, scores similar to 3D-Var, worse than 4D-Var; potential benefit from raising EnKF model top to 0.1hPa
- 4D-EnVar is an attractive alternative to 4D-Var:
 - like EnKF, uses full nonlinear model dynamics/physics to evolve covariances; no need to maintain TL/AD version of model
 - computational saving allows increase in analysis resolution and more computational resources for EnKF and forecasts

ECCC's NWP systems since 2016

ECCC's NWP systems in ~2020

The range of analysed scales will increase with time <u>in both</u> global and limited-area NWP. DA methods that can cope with this challenge are needed: scale-dependent localization

Page 19 – January-29-18

Scale-dependent covariance localization Motivation

- Currently, EnVar uses single horizontal and vertical localization length scales, very similar to our EnKF
- Comparing various studies, seems it is best to use different amount of localization depending on application:
 - convective-scale assimilation: ~10km
 - mesoscale assimilation: ~100km
 - global-scale assimilation: ~1000km 3000km
- In the future, global systems will resolve convective scales
- Therefore, need a general approach for applying appropriate localization to wide range of scales in a single analysis procedure: Scale-dependent localization

Page 20 – January-29-18

Scale-dependent covariance localization General Approach

- Ensemble perturbations decomposed with respect to a series of overlapping spectral wavebands
- Apply scale-dependent spatial localization to the scaledecomposed covariances, both within-scale and between-scale covariances (Buehner and Shlyaeva 2015)
- Keeping the between-scale covariances is necessary to maintain heterogeneity of ensemble covariances

Environment and Climate Change Canada Page 21 – January-29-18

Horizontal Scale Decomposition

Filter response functions for decomposing with respect to 3 horizontal scale ranges

Work of Jean-Francois Caron

Environment and Climate Change Canada

Horizontal Scale Decomposition

Perturbations for ensemble member #001 – Temperature at ~700hPa

Differences a 00 heures valides 12:00Z le 17 octobre 2014

minute ondrige ounded onangomont onmatique

Horizontal Scale Decomposition

Work of Jean-Francois Caron

Scale-dependent covariance localization Implementation in EnVar

Current (one-size-fits-all) Approach

 Analysis increment computed from control vector (B^{1/2} preconditioning) using:

$$\Delta \mathbf{X} = \sum_{k} \mathbf{e}_{k} \circ \left(\mathbf{L}^{1/2} \mathbf{v}_{k} \right) \qquad \qquad \mathbf{k: member index}$$

Scale-dependent Approach (Buehner and Shlyaeva, 2015, Tellus)

 Varying amounts of smoothing applied to same set of amplitudes for a given member

$$\Delta \mathbf{X} = \sum_{k} \sum_{j} \mathbf{e}_{k,j} \circ \left(\mathbf{L}_{j}^{1/2} \mathbf{v}_{k} \right)$$

- k: member index
- j: scale index

where $e_{k,j}$ is scale *j* of normalized member *k* perturbation

Page 25 – January-29-18

Work of Jean-Francois Caron

Scale-dependent covariance localization Impact in single observation DA experiments

700 hPa T observation at the center of Hurricane Gonzalo (October 2014)

Normalized temperature increments (correlationlike) at 700 hPa resulting from various B matrices.

10000km

B_{ens} No hLoc

Work of Jean-Francois Caron

Environment and Climate Change Canada

Envire Chan

Scale-dependent covariance localization Impact in single observation DA experiments

700 hPa T observation at the center of a **High Pressure**

Normalized temperature increments (correlationlike) at 700 hPa resulting from various B matrices.

Environment and Climate Change Canada Envirc 10000km Chan

Work of Jean-Francois Caron

Scale-dependent covariance localization Forecast impact

- 2.5-month trialling (June-August 2014) in our global NWP system.
- 3D-EnVar with 100% B_{ens} used in both experiments
 - 1) Control experiment: hLoc = 2800 km, vLoc = 2 units ln(p)
 - 2) Scale-Dependent experiment with a 3 horizontal-scale decomposition
 - I. Small scale uses hLoc = 1500 km
 - II. Medium scale uses hLoc = 2400 km Ad hoc values!
 - III. Large scale with uses = 3300 km

Same vLoc (2 units of ln(p)) for every horizontal-scale

Environment and Climate Change Canada Page 28 – January-29-18

Environnement et Changement climatique Canada Work of Jean-Francois Caron

Scale-dependent covariance localization Forecast impact – Comparison against ERA-Interim

Summary – Scale-dependent localization

- Scale-dependent localization is feasible, but more expensive than single-scale localization (like having a larger ensemble)
- Preliminary results using a <u>horizontal</u>-scale-dependent <u>horizontal</u> localization results in modest forecast improvements in our global NWP system
- Expect larger improvements in a system with larger range of scales assimilating dense high-resolution observations and/or with fewer ensemble members
- Finding the optimal SDL setup is **not** straightforward

Environment and Climate Change Canada Page 30 – January-29-18

Environnement et Changement climatique Canada

Work of Jean-Francois Caron

FSOI adapted for 4D-EnVar: Motivation

- Since retirement of 4D-Var, development discontinued of tangent linear and adjoint of forecast model
- Therefore, to perform FSOI in context of 4D-EnVar, requires adapting approach to avoid use of adjoint of forecast model
- Pure ensemble approach exists (e.g. as used at NCEP), but can only give impact of observations assimilated in EnKF
- At ECCC, numerous observation types assimilated in 4D-EnVar not assimilated in EnKF (AIRS, IASI, CrIS, SSMIS, Geo-rad, GB-GPS)

Basic idea of FSOI

• Goal is to partition, with respect to arbitrary subsets of observations, the forecast error reduction from assimilating these observations:

New FSOI approach (Idea from Lorenc working paper)

Forecast step uses ensemble, DA step like variational approach

- Instead of using adjoint of forecast model, sensitivities propagated to analysis time using extended background ensemble forecasts → requires use of 100% ensemble B in analysis step
- The analysis increment is a (spatially varying) linear combination of the background ensemble*, the propagated increment is assumed to be the same linear combination of the ensemble* at the forecast time
- Adjoint of analysis step uses standard variational approach

FSOI experiments with new approach

- Performed 4D-EnVar data assimilation experiment similar to operational configuration, but with 100% ensemble B
- Forecast error measured with dry global energy norm up to 100hPa relative to operational GDPS analyses
- For new ensemble-variational approach, computed FSOI both with and without horizontal advection of the localization (0.75 × wind)
- Compared results with using adjoint of forecast model to propagate sensitivities from forecast → analysis time

Page 34 - January-29-18

Results

Number of assimilated observations

Results

Average impact per analysis on 0Z+6Z 24h forecasts

- Overall, similar results between using ensemble or adjoint model
- Advection increases apparent impact when using ensemble
- In-situ surface obs have larger apparent impact when using ensemble
- Radiances, Raob and GPS-RO have lower impact with ensemble

Results: 24h forecasts Average impact of Land and Ship (+buoy)

Environment and Climate Change Canada

Results: 24h forecasts

Vertical distribution: Impact of Raob and AMSU-A

Results: 24h forecasts

Impact when using diagonal versus non-diagonal R

- Inclusion of inter-channel error correlations combined with reduction of obs error variances for highly correlated humidity channels
- Use of correlations decreases impact of hyper spectral IR sensors
- Cannot separate impact of intercorrelated channels

Results: 24h forecasts Daily average impact for Geo-Radiances in 5°x5° boxes

Detailed spatial impact of geostationary radiances (1 channel per instrument) is generally similar between approaches

Environment and

Conclusions – New FSOI approach

- Results with new FSOI approach adapted for use with EnVar qualitatively similar to using adjoint model
- Significant differences for some obs types (e.g. sfc):
 - At least partially due to vertical ensemble localization
 - Also due to nonlinear ensemble vs. linear adjoint propagation:
 - incomplete simplified physics and no surface sensitivities in adjoint model
 - use of multi-physics approach and independently evolving surface fields in ensemble
- Current approach (formally) limited to EnVar with 100% ensemble B

Page 41 – January-29-18

Other ongoing projects related to EnVar

- Next delivery will use ensembles with top at 0.1hPa, 39km resolution → ~10 min. for 4D-EnVar, 70 iter on 27 nodes
- Developing high-resolution 4D-EnVar for regional analysis
- Testing different strategies for recentering global EnKF members on a 4D-EnVar ensemble mean analysis
- Working towards atmosphere-ocean-ice strongly coupled DA (global coupled forecasts already operational)
- Many projects (e.g. FSOI, SDL, coupled DA) facilitated by work on increasing the modularization and generalization of DA Fortran code (continuous refactoring as needed)
- Hope to explore new ideas: treatment of horizontally correlated obs error, non-Gaussian errors (LPF), ...

Page 42 – January-29-18

Extra slides

Environment and Climate Change Canada Page 43 – January-29-18

Scale-dependent covariance localization Forecast impact

- Is it possible to do as well as SDL with a single localization approach?
- After all, perhaps our one-size-fits-all horizontal localization radius of 2800 km is not optimal
- Tried increasing and decreasing amount of localization and compare with using standard amount...

Environment and Climate Change Canada Environnement et

Changement climatique Canada

Page 44 – January-29-18

Work of Jean-Francois Caron

Scale-dependent covariance localization Forecast impact – Comparison against ERA-Interim

	ScoreCard against ERA-Interim								GDPS500_3DBEN02_E14 GDPS500_3DBEN_E14	
		2014061600-2014073112								
2800 km is better 2400 km is better		U 050	Δ	Δ	Δ	۵	Δ	Δ	Δ	
	Northern ET Δ nwp-index +0.05 % Tropics Δ nwp-index +0.64 % Southern ET Δ nwp-index -0.25 %	U 250	Δ	Δ	۵	Δ	⊽	\bigtriangledown	▽	
		Z 500	Δ	Δ	Δ	Δ	▽	\bigtriangledown		
		RH 700	Δ	Δ	Δ	Δ	۵	▽	⊽	
		T 850	Δ	Δ	Δ	⊽	▽	\bigtriangledown		
		U 050	Δ	Δ	Δ	Δ	Δ	Δ	Δ	
		U 250	Δ	▼	Δ	Δ	Δ	\bigtriangleup	Δ	
		U 850	Δ	۵	Δ	۵	Δ	Δ	Δ	
		U 050	Δ	⊽	▽	\bigtriangledown	∇	\bigtriangleup	Δ	
		U 250	Δ	⊽	\bigtriangledown	\bigtriangledown	∇	\bigtriangledown	\bigtriangledown	
		Z 500	⊽	\bigtriangledown	\bigtriangledown	\bigtriangledown	∇	Δ	Δ	
		RH 700	Δ	۵	▽	\bigtriangledown	⊽	Δ	Δ	
		T 850	۵	▽	∇	\bigtriangledown	۵	Δ	\bigtriangleup	
		·	024	048	072	960	120	144	168	

Environment and Climate Change Ca Forecast Lead Time (h) Work of Jean-Francois Caron

Scale-dependent covariance localization Forecast impact – Comparison against ERA-Interim

Environment and Climate Change Ca

Work of Jean-Francois Caron

FSOI general approach

• Forecast error reduction from assimilating all observations:

$$\Delta e^{2} = \left(\mathbf{e}_{t+\Delta t}^{fa}\right)^{T} \mathbf{C} \left(\mathbf{e}_{t+\Delta t}^{fa}\right) - \left(\mathbf{e}_{t+\Delta t}^{fb}\right)^{T} \mathbf{C} \left(\mathbf{e}_{t+\Delta t}^{fb}\right)$$

 This can be rewritten as a sum of contributions from each observation, allowing the calculation of contribution from any subset of obs:

$$\Delta e^2 \approx \sum_i \left(\mathbf{y}^o - H(\mathbf{x}^b) \right)_i \partial \Delta e^2 / \partial \mathbf{y}_i^o$$

• Where the sensitivity of the change in forecast error to each observation can be written as (using the chain rule):

$$\frac{\partial \Delta e^2}{\partial \mathbf{y}^o} = \left(\frac{\partial \mathbf{x}_t}{\partial \mathbf{y}^o}\right) \left(\frac{\partial \mathbf{x}_{t+\Delta t}}{\partial \mathbf{x}_t}\right) \left(\frac{\partial \Delta e^2}{\partial \mathbf{x}_{t+\Delta t}}\right)$$

Page 47 – January-29-18

Environment and Climate Change Canada

Formulation (Idea from A. Lorenc working paper)

Change in forecast error at time *t* (with respect to norm **C**) is given by: $\Delta e^2 = \left(\mathbf{e}_t^{fa}\right)^T \mathbf{C} \left(\mathbf{e}_t^{fa}\right) - \left(\mathbf{e}_t^{fb}\right)^T \mathbf{C} \left(\mathbf{e}_t^{fb}\right)$

Denote gradient of this with respect to any quantity as: $(\widehat{\cdot}) = \partial \Delta e^2 / \partial (\cdot)$ Write Δe^2 as a sum of contributions from each obs:

$$\Delta e^2 \approx \left(\mathbf{y}^o - H(\mathbf{x}^b)\right)^T (\hat{\mathbf{y}}^o)$$

Based on extended ensemble at forecast time, replaces $\mathbf{B}_0^{T/2} \mathbf{M}^T$

Where:

 $\hat{\mathbf{y}}^{o} = \mathbf{R}^{-1} \mathbf{H} \mathbf{B}^{1/2} \hat{\mathbf{a}} \rightarrow \text{sensitivity wrt observations}$ $\hat{\mathbf{v}} = \mathbf{B}_{t}^{T/2} \widehat{\delta \mathbf{x}_{t}} \rightarrow \text{sensitivity wrt control vector}$ $\widehat{\delta \mathbf{x}_{t}} = \mathbf{C} \left(\mathbf{e}_{t}^{fa} + \mathbf{e}_{t}^{fb} \right) \rightarrow \text{sensitivity wrt forecast}$

And \hat{a} is obtained by minimizing the cost function (very similar to EnVar):

$$J(\hat{\mathbf{a}}) = \frac{1}{2} (\hat{\mathbf{a}} - \hat{\mathbf{v}})^T (\hat{\mathbf{a}} - \hat{\mathbf{v}}) + \frac{1}{2} \left(\mathbf{H} \mathbf{B}_0^{1/2} \hat{\mathbf{a}} \right)^T \mathbf{R}^{-1} \left(\mathbf{H} \mathbf{B}_0^{1/2} \hat{\mathbf{a}} \right)$$

Environment and Climate Change Canada Page 48 – January-29-18

Environnement et

Changement climatique Canada

Results

Actual and estimated change in <u>12h and 24h forecast error</u> from assimilating observations at 0Z and 6Z

