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Background

• Before November 2014, Environment Canada had 2 
relatively independent state-of-the-art DA systems

• 4D-Var (Gauthier et al 2007) and EnKF (Houtekamer et al 
2009):

– both operational since 2005
– both use GEM forecast model and assimilate obs

• 4D-Var used to initialize global deterministic forecasts

• EnKF is used to initialize global ensemble forecasts

• Can the EnKF be used to satisfy all assimilation needs?

• Intercomparison of approaches in carefully controlled 
context: similar forecast quality from EnKF and 4D-Var, 
4D-Var with Bens better (Buehner et al 2010, MWR)
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Ensemble-Variational assimilation: EnVar

• 4D-EnVar uses a variational assimilation approach in 
combination with the already available 4D ensemble 
background-error covariances from the EnKF

• By making use of the 4D ensembles, 4D-EnVar performs 
a 4D analysis without the need of the tangent-linear and 
adjoint of the forecast model

• Hybrid covariances are used in 4D-EnVar by averaging 
the ensemble covariances with the static climatological 
covariances

• Currently, our EnKF has 256 members, assimilates 
perturbed observations, and uses no recentering
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4D-EnVar as an alternative to 4D-Var
The thinking around 2012

• Overall, 4D-EnVar analysis ~6X faster than 4D-Var on 
half as many cpus, and higher resolution increments

• Wall-clock time of 4D-Var was close to allowable time 
limit and model TL/AD did not scale well

• To progress with 4D-Var, significant work required to 
improve scalability at resolutions used in 4D-Var

• Decision made to try to replace 4D-Var with more efficient 
4D-EnVar  if 4D-EnVar is at least as good as current
4D-Var

• Decided to take the risk of replacing 4D-Var and focus 
efforts on improving the ensemble and its use in the 
EnKF and 4D-EnVar
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• In 4D-Var the 3D analysis increment is evolved in time using the 
TL/AD forecast model (here included in H4D):

• In EnVar the background-error covariances and analysed state are 
explicitly 4-dimensional, resulting in cost function:

• Computations involving ensemble-based B4D can be more 
expensive than with Bnmc, but can be easily parallelized
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• radiosonde 
temperature 
observation at 
500hPa

• observation at 
beginning of 
assimilation 
window (-3h)

• with same B, 
increments very 
similar from    
4D-Var, EnKF

• contours are 
500hPa GZ 
background 
state at 0h 
(ci=10m)

Single observation experiments
Difference in temporal covariance evolution

contour plots at 500 hPa
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• radiosonde 
temperature 
observation at 
500hPa

• observation at 
middle of 
assimilation 
window (+0h)

• with same B, 
increments very 
similar from    
4D-Var, EnKF

• contours are 
500hPa GZ 
background 
state at 0h 
(ci=10m)

Single observation experiments
Difference in temporal covariance evolution

contour plots at 500 hPa
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• radiosonde 
temperature 
observation at 
500hPa

• observation at 
end of 
assimilation 
window (+3h)

• with same B, 
increments very 
similar from    
4D-Var, EnKF

• contours are 
500hPa GZ 
background 
state at 0h 
(ci=10m)

Single observation experiments
Difference in temporal covariance evolution

contour plots at 500 hPa

+

+ +

+

4D-EnVar



Page 10 – January-29-18

Experimental results:
Configuration (Buehner et al. 2013, NPG)

4D-EnVar tested in comparison with version of forecast 
system implemented in operations in Feb, 2013: 

• model top at 0.1hPa, 80 levels
• model has ~25km grid spacing
• 4D-Var analysis increments with ~100km grid spacing

4D-EnVar experiments use ensemble members from 
following configuration of EnKF:

• 192 members every 60min in 6-hour window
• model top at 2hPa, 75 levels
• model ~66km grid spacing  EnVar increments ~66km
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EnVar uses Hybrid Covariance Matrix
Model top of EnKF is lower than GDPS

Bens and Bnmc are averaged in troposphere ½ & ½, 
tapering to 100% Bnmc at and above 6hPa (EnKF model 
top at 2hPa)

Bens scale factor

Bnmc scale factor

scale factor

p
re

s
s
u
re

Therefore, EnVar not 
expected to be better than 
3D-Var above ~10-20hPa
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Forecast Results: 4D-EnVar vs. 4D-Var
Radiosonde verification scores – 6 weeks, Feb/Mar 2011

6h forecast
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Forecast Results: EnVar vs. 3D-Var and 4D-Var
Verification against ERA-Interim analyses – 6 weeks, Feb/Mar 2011

EnVar vs. 3D-Var   EnVar vs. 4D-Var120h forecast, global domain

no EnKF 
covariances

transition
zone

½ EnKF and
½ NMC
covariances

no EnKF 
covariances

transition
zone

½ EnKF and
½ NMC
covariances

U

GZ

RH

T

U

GZ

RH

T
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Forecast Results: 4D-EnVar vs. 4D-Var
Verification against ERA-Interim analyses – 6 weeks

North extra-tropics 

500hPa GZ correlation anomaly

Feb/Mar 2011 July-Aug 2011



Page 15 – January-29-18

Forecast Results: 4D-EnVar vs. 4D-Var
Verification against ERA-Interim analyses – 6 weeks, Feb/Mar 2011

South extra-tropics 

500hPa GZ correlation anomaly

This is the only significant 
degradation seen vs. 4D-Var in 
troposphere; 

Not in radiosonde scores 
because it originates from 
south of 45°S

Feb/Mar 2011 July-Aug 2011
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Forecast Results: 4D-EnVar vs. 4D-Var
Verification against ERA-Interim analyses – 6 weeks, Feb/Mar 2011

Tropics 

250hPa U-wind STDDEV

Feb/Mar 2011 July-Aug 2011
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Conclusions

• Comparison of 4D-EnVar with 4D-Var (and 3D-Var):

– EnVar produces similar quality forecasts as 4D-Var below 
~20hPa in extra-tropics (except southern extra-tropical summer), 
significantly improved in tropics

– above ~20hPa, scores similar to 3D-Var, worse than 4D-Var; 
potential benefit from raising EnKF model top to 0.1hPa

• 4D-EnVar is an attractive alternative to 4D-Var:

– like EnKF, uses full nonlinear model dynamics/physics to evolve 
covariances; no need to maintain TL/AD version of model

– computational saving allows increase in analysis resolution and 
more computational resources for EnKF and forecasts
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ECCC's NWP systems since 2016
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ECCC's NWP systems in ~2020

x 20

x 20Global

Regional
hourly cycling!

Deterministic Ensemble

EnKF or 

VarEnKF
(25-km?)

4DEnVar

4DEnVar

GDPS

RDPS

GEPS

REPS

x=2.5km

x=25km

x=10km

xa=25km?

xa=10km

x 20

x=10km

10-km 

EnKF or 

VarEnKF

x 20

The range of analysed scales  will increase with time in both

global and limited-area NWP. DA methods that can cope with 

this challenge are needed: scale-dependent localization
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Scale-dependent covariance localization
Motivation

• Currently, EnVar uses single horizontal and vertical 
localization length scales, very similar to our EnKF

• Comparing various studies, seems it is best to use different 
amount of localization depending on application:
• convective-scale assimilation: ~10km 

• mesoscale assimilation:          ~100km

• global-scale assimilation:        ~1000km – 3000km

• In the future, global systems will resolve convective scales

• Therefore, need a general approach for applying 
appropriate localization to wide range of scales in a single 
analysis procedure: Scale-dependent localization



Page 21 – January-29-18

Scale-dependent covariance localization
General Approach

• Ensemble perturbations decomposed with respect to a 
series of overlapping spectral wavebands

• Apply scale-dependent spatial localization to the scale-
decomposed covariances, both within-scale and 
between-scale covariances (Buehner and Shlyaeva 2015)

• Keeping the between-scale covariances is necessary to 
maintain heterogeneity of ensemble covariances
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Horizontal Scale Decomposition

Large 

scale

Medium 

scale

Small 

scale

2000 km10000 km 500 km

Filter response functions for decomposing 

with respect to 3 horizontal scale ranges

Work of Jean-Francois Caron
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Horizontal Scale Decomposition

Full Large scale

Small scale Medium scale

Perturbations for ensemble member #001 – Temperature at ~700hPa
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Waveband integrated 

variances

Large scale
Medium scale

Small scale

Horizontal Scale Decomposition

6-h perturbation from 

256-member EnKF

h
P

a
Horizontal scale-

dependent localization 

leads to (implicit)… 

variable-dependent 

and

level-dependent

horizontal localization 

T

All the scales

log(q)

Work of Jean-Francois Caron
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Scale-dependent covariance localization
Implementation in EnVar

• Analysis increment computed from control vector 
(B1/2 preconditioning) using:

 
k j

kjjk vLex 21/

, 

 
k

kk vLex 21/

• Varying amounts of smoothing applied to same set of 
amplitudes for a given member

Current (one-size-fits-all) Approach

Scale-dependent Approach (Buehner and Shlyaeva, 2015, Tellus)

where ek,j is scale j of normalized 

member k perturbation

k: member index

j: scale index

k: member index

Work of Jean-Francois Caron
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Normalized temperature 

increments (correlation-

like) at 700 hPa resulting 

from various B matrices.

Scale-dependent covariance localization
Impact in single observation DA experiments

Bnmc

Bens No hLocBens Std hLoc

Bens SD hLoc
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700 hPa T 

observation at 

the center of 

Hurricane 

Gonzalo (October 2014) hLoc: 2800km
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Work of Jean-Francois Caron
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Bens No hLoc

Normalized temperature 

increments (correlation-

like) at 700 hPa resulting 

from various B matrices.

Scale-dependent covariance localization
Impact in single observation DA experiments

Bnmc

Bens Std hLoc

Bens SD hLoc
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Work of Jean-Francois Caron
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Scale-dependent covariance localization
Forecast impact

1) Control experiment: hLoc = 2800 km, vLoc = 2 units ln(p)

2) Scale-Dependent experiment with a 3 horizontal-scale 

decomposition
I. Small scale uses hLoc = 1500 km

II. Medium scale uses hLoc = 2400 km

III. Large scale with uses = 3300 km

• 2.5-month trialling (June-August 2014) in our global 

NWP system.

• 3D-EnVar with 100% Bens used in both experiments

Ad hoc values!

Same vLoc (2 units of ln(p)) for every horizontal-scale

Work of Jean-Francois Caron
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Scale-dependent covariance localization
Forecast impact – Comparison against ERA-Interim

SDL is better

Control is better

Solid triangles 

indicate statistically 

significant 

differences

Work of Jean-Francois Caron
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Summary – Scale-dependent localization

• Scale-dependent localization is feasible, but more 
expensive than single-scale localization (like having a 
larger ensemble)

• Preliminary results using a horizontal-scale-dependent 
horizontal localization results in modest forecast 
improvements in our global NWP system

• Expect larger improvements in a system with larger 
range of scales assimilating dense high-resolution 
observations and/or with fewer ensemble members

• Finding the optimal SDL setup is not straightforward

Work of Jean-Francois Caron
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FSOI adapted for 4D-EnVar: Motivation

• Since retirement of 4D-Var, development discontinued of 
tangent linear and adjoint of forecast model

• Therefore, to perform FSOI in context of 4D-EnVar, 
requires adapting approach to avoid use of adjoint of 
forecast model

• Pure ensemble approach exists (e.g. as used at NCEP), 
but can only give impact of observations assimilated in 
EnKF

• At ECCC, numerous observation types assimilated in 4D-
EnVar not assimilated in EnKF (AIRS, IASI, CrIS, SSMIS, 
Geo-rad, GB-GPS)
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Basic idea of  FSOI

• Goal is to partition, with respect to arbitrary subsets of observations, 

the forecast error reduction from assimilating these observations:

Time

F
o
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c
a
s
t 

E
rr

o
r

tt-6h t+∆t

𝐞𝑡+∆𝑡
𝑓𝑏

= 𝑴 𝐱𝑡
𝑏 − 𝐱𝑡+∆𝑡

𝑎

𝐞𝑡+∆𝑡
𝑓𝑎
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𝑎 − 𝐱𝑡+∆𝑡

𝑎

∆𝑒2 = 𝐞𝑡+∆𝑡
𝑓𝑎 𝑇

𝐂 𝐞𝑡+∆𝑡
𝑓𝑎

− 𝐞𝑡+∆𝑡
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𝑓𝑏
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of obs

𝐱𝑡
𝑏 → 𝐱𝑡

𝑎

Scalar measure of forecast error

Verifying analysis
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New FSOI approach (Idea from Lorenc working paper)

Forecast step uses ensemble, DA step like variational approach

• Instead of using adjoint of forecast model, sensitivities propagated to 
analysis time using extended background ensemble forecasts 
requires use of 100% ensemble B in analysis step

• The analysis increment is a (spatially varying) linear combination of 
the background ensemble*, the propagated increment is assumed to 
be the same linear combination of the ensemble* at the forecast time

• Adjoint of analysis step uses standard variational approach

Adjoint 

of DA

Adjoint 

of Fcst

Sens. wrt

fcst.=( ( () ) )Sens. 

wrt obs

Time

A
tm

o
s
p
h
e
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c
 S

ta
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tt-6h t+∆t

Assimilation 

of obs

𝐱𝑡
𝑏 → 𝐱𝑡

𝑎

*actually the deviations 

of the ensemble 

members from the 

ensemble mean state
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FSOI experiments with new approach

• Performed 4D-EnVar data assimilation experiment similar 
to operational configuration, but with 100% ensemble B

• Forecast error measured with dry global energy norm 
up to 100hPa relative to operational GDPS analyses

• For new ensemble-variational approach, computed FSOI 
both with and without horizontal advection of the 
localization (0.75 × wind)

• Compared results with using adjoint of forecast model to 
propagate sensitivities from forecastanalysis time
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Results
Number of assimilated observations
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Results
Average impact per analysis on 0Z+6Z 24h forecasts

• Overall, similar results between using ensemble or adjoint model

• Advection increases apparent impact when using ensemble

• In-situ surface obs have larger apparent impact when using ensemble

• Radiances, Raob and GPS-RO have lower impact with ensemble

Ordered by 

Adjoint-FSOI

8
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Results: 24h forecasts
Average impact of Land and Ship (+buoy)

humidity

temperature

surface pressure

Land Ship (+buoy)

humidity

temperature

wind components

surface pressure
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Results: 24h forecasts
Vertical distribution: Impact of Raob and AMSU-A

Raob

Temperature
AMSU-A
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Results: 24h forecasts
Impact when using diagonal versus non-diagonal R

• Inclusion of inter-channel error 
correlations combined with 
reduction of obs error variances 
for highly correlated humidity 
channels

• Use of correlations decreases 
impact of hyper spectral IR 
sensors

• Cannot separate impact of inter-
correlated channels
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Results: 24h forecasts
Daily average impact for Geo-Radiances in 5˚x5˚ boxes

• Detailed spatial impact 
of geostationary 
radiances (1 channel 
per instrument) is 
generally similar 
between approaches

Adjoint approach

New approach with 

advected localization

9
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Conclusions – New FSOI approach

• Results with new FSOI approach adapted for use with 
EnVar qualitatively similar to using adjoint model

• Significant differences for some obs types (e.g. sfc):

– At least partially due to vertical ensemble localization

– Also due to nonlinear ensemble vs. linear adjoint
propagation:

▪ incomplete simplified physics and no surface 
sensitivities in adjoint model

▪ use of multi-physics approach and independently 
evolving surface fields in ensemble

• Current approach (formally) limited to EnVar with 100% 
ensemble B
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Other ongoing projects related to EnVar

• Next delivery will use ensembles with top at 0.1hPa, 39km 
resolution  ~10 min. for 4D-EnVar, 70 iter on 27 nodes

• Developing high-resolution 4D-EnVar for regional analysis

• Testing different strategies for recentering global EnKF
members on a 4D-EnVar ensemble mean analysis

• Working towards atmosphere-ocean-ice strongly coupled 
DA (global coupled forecasts already operational)

• Many projects (e.g. FSOI, SDL, coupled DA) facilitated by 
work on increasing the modularization and generalization 
of DA Fortran code (continuous refactoring as needed)

• Hope to explore new ideas: treatment of horizontally 
correlated obs error, non-Gaussian errors (LPF), … 
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Extra slides
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Scale-dependent covariance localization
Forecast impact

• Is it possible to do as well as SDL with a single 
localization approach?

• After all, perhaps our one-size-fits-all horizontal 
localization radius of 2800 km is not optimal

• Tried increasing and decreasing amount of localization 
and compare with using standard amount…

Work of Jean-Francois Caron



Page 45 – January-29-18

Scale-dependent covariance localization
Forecast impact – Comparison against ERA-Interim

2400 km is better

2800 km is better

Work of Jean-Francois Caron
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Scale-dependent covariance localization
Forecast impact – Comparison against ERA-Interim

3300 km is better

2800 km is better

Work of Jean-Francois Caron
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FSOI general approach

• Forecast error reduction from assimilating all observations:

• This can be rewritten as a sum of contributions from each observation, 
allowing the calculation of contribution from any subset of obs:

• Where the sensitivity of the change in forecast error to each 
observation can be written as (using the chain rule):

∆𝑒2 = 𝐞𝑡+∆𝑡
𝑓𝑎 𝑇

𝐂 𝐞𝑡+∆𝑡
𝑓𝑎

− 𝐞𝑡+∆𝑡
𝑓𝑏 𝑇

𝐂 𝐞𝑡+∆𝑡
𝑓𝑏

∆𝑒2 ≈ 

𝑖

𝐲𝑜 − 𝐻 𝐱𝑏
𝑖
𝜕∆𝑒2/𝜕𝐲𝑖

𝑜

𝜕∆𝑒2

𝜕𝐲𝑜
=
𝜕𝐱𝑡
𝜕𝐲𝑜

𝜕𝐱𝑡+∆𝑡
𝜕𝐱𝑡

𝜕∆𝑒2

𝜕𝐱𝑡+∆𝑡

Adjoint 

of DA

Adjoint 

of Fcst

Sensitivity 

wrt fcst.=( ( () ) )Sensitivity 

wrt obs
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Formulation (Idea from A. Lorenc working paper)

Change in forecast error at time t (with respect to norm 𝐂) is given by:

∆𝑒2 = 𝐞𝑡
𝑓𝑎 𝑇

𝐂 𝐞𝑡
𝑓𝑎
− 𝐞𝑡

𝑓𝑏 𝑇
𝐂 𝐞𝑡

𝑓𝑏

Denote gradient of this with respect to any quantity as:  ∙ = 𝜕∆𝑒2 / 𝜕 ∙

Write ∆𝑒2 as a sum of contributions from each obs:

∆𝑒2 ≈ 𝐲𝑜 − 𝐻 𝐱𝑏
𝑇
 𝐲o

Where:

 𝐲𝑜 = 𝐑−1𝐇𝐁1/2  𝐚

 𝐯 = 𝐁𝑡
𝑇/2  𝜹𝐱𝑡

 𝜹𝐱𝑡 = 𝐂 𝐞𝑡
𝑓𝑎
+ 𝐞𝑡

𝑓𝑏

And  𝐚 is obtained by minimizing the cost function (very similar to EnVar):

𝐽  𝐚 =
1

2
( 𝐚 −  𝐯)𝑇( 𝐚 −  𝐯) +

1

2
𝐇𝐁0

1/2
 𝐚
𝑇
𝐑−1 𝐇𝐁0

1/2
 𝐚

sensitivity wrt forecast

sensitivity wrt control vector

sensitivity wrt observations

Based on extended 

ensemble at forecast 

time, replaces 𝐁0
𝑇/2
𝐌𝑇
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Results
Actual and estimated change in 12h and 24h forecast error from 
assimilating observations at 0Z and 6Z

12h Forecasts

24h Forecasts


