

Environment and Climate Change Canada Environnement et Changement climatique Canada

Sea ice data assimilation for NWP and operational ice services at Environment and Climate Change Canada

ECMWF Workshop on observations and analysis of sea-surface temperature and sea ice for NWP and Climate Applications Mark Buehner, Alain Caya, Alex Komarov Meteorological Research Division Lynn Pogson, Michael Ross Canadian Ice Service 22-25 January 2018

With funding support from PERD and CSA

Contents

- Motivation for sea ice data assimilation at ECCC
- Data assimilation methodology
- Recent addition of new observations
- Current research projects

Environment and Climate Change Canada Page 2 – January-29-18

The need for coupled Atmosphere-**Ice**-Ocean prediction

ECCC requires ice-ocean forecasts and information services for:

- Sea ice prediction
 - Improved automated analyses and forecasts for the Canadian Ice Service - to complement manual ice chart analyses
 - Identify/predict high pressure areas dangerous for ships
- Improved weather and wave prediction
 - Timescales from days to seasons
 - Sea ice, tropical cyclones, surface interactions
- Emergency response
 - Comprehensive trajectory modelling capacity
 - E.g. dispersion of pollutants

Page 3 – January-29-18

Environnement et Changement climatique Canada Davidson et al., SCOR, 2013

Ice-ocean modelling with

Applications and domains

CICE

1/4° Global

Surface currents

Operational Experimental In development

- Global 1° resolution (CanSIPS-GI
 - Seasonal forecasting
- Global 1/4° resolution (GIOPS)
 - Medium-monthly forecasting
 - Fully-coupled for NWP
- N. Atlantic & Arctic 1/12° (RIOPS)
 - Short-to-medium range forecasting
 - Coupled HRDPS-Polar for YOPP
- Great Lakes 2km and Gulf of St. • Lawrence 5km
 - Short-term forecasting

120⁰E

180⁰W

120°W

60°W

30⁰N

Page 4 – January-29-18

Environment and Climate Change Canada

Environnement et Changement climatique Canada

1/12° N. Atlantic and Arctic

Coupled Global Forecast

Recently became operational

G Smith, J-M Belanger, F Roy, ...

- Coupled model:
 - Atm: GEM 25km
 - Ocean: NEMO-ORCA025 (1/4°)
 - Ice: CICE4
 - Uncoupled DA
- Evaluation of summer trials
 - 10 day forecasts 15 Jun–31 Aug, 2014
 - Significant forecast improvements over most areas
 - Shown: 850hPa geopotential height versus ERA-Interim

Page 5 – January-29-18

Regional / global ice concentration analyses (Buehner et al. 2016)

- Regional: ~ 5.0 km resolution; Global: ~10 km resolution
- 4 analyses per day
- background = analysis 6 hours earlier
- total ice concentration (3DVar) and analysis-error stddev estimate (KF)
- observations assimilated:
 - CIS image analyses and daily and regional ice charts, lake bulletins
 - SSM/I, SSM/IS, AMSR2
 - ASCAT
 - AVHRR (ice/water)
- ice is removed where SST > 4°C
- ice field is "corrected" where analysiserror stddev is high

1768 × 1618 grid points

Page 6 – January-29-18

Sea ice data assimilation cycle

Passive microwave data SSMI, SSMIS, AMSR2

- Assimilation:
 - Total ice concentration estimated from NASA Team 2 (NT2) retrieval algorithm
 - Use "footprint" observation operator that aggregates gridded ice lacksquareconcentration over footprint of instrument
- Quality control reject data when:
 - Surface Air Temperature (SAT) > 0°C (melt ponds)
 - Retrieved ice concentration is not zero AND
 - Sea Surface Temperature (SST) is above 4°C <u>OR</u>
 - Historical Frequency of Occurrence of ice is 0 OR
 - Wind speed > 25 knots (Wind filter)
- Background check:
 - Reject entire observation swath with bad/corrupted data (based) on average RMS difference with background state)

Page 8 – January-29-18

Observation footprints

- Footprint observation operator important for combining information from sensors with such different resolution
- Observation rejected if footprint touches land, removing most low resolution obs near coast and in narrow channels

Page 9 – January-29-18

Environnement et

Changement climatique Canada

Impact of observation quality control Example: July 8, 2007

Without QC

With QC

Page 10 – January-29-18

Environment and Climate Change Canada

Effect of wind filter

Without wind filter

With wind filter

Page 11 – January-29-18

Environment and Climate Change Canada

Analysis error stddev

- Due to QC procedures, may not assimilate data in a particular region for an extended period
- Therefore, also estimate analysis error stddev with simplified KF and simple error growth model
- Where ice is removed due to SST > 4°C, stddev set to zero
- Used when initializing forecasts: only replace model value at grid points with low uncertainty
- Used for forecast verification: only consider grid points with low uncertainty

Page 12 – January-29-18

Ice / water classification from AVHRR(visible and infrared)We developed a sim

SOURCE: CIS DAILY AND REGIONAL ICE CHARTS / SOURCE: CARTES QUOTIDIENNES ET RÉGIONALES DES GLACES DU SC

Environment and Climate Change Canada Environnement et Changement climatique We developed a simple classification procedure (ice / water / ambiguous / cloud)

Distinguishing cloud from ice is difficult, but critically important

Example: 2011-08-05 16Z Western Arctic

(after thick cloud removed)

Ice concentration from CIS image analysis

Assimilation strategy:

- Water observations assimilated as 0%, Ice assimilated as:
- 85% when background concentration < 85%
- otherwise, rejected
 (background already consistent with obs)

Environment and Climate Change Canada Environnement et Changement climatique Canada

Page 15 - January-29-18

Comparison of Ice / Water from AVHRR and IMS (NOAA manual ice/water product)

- Few observations in winter (insufficient solar illumination)
- Generally high accuracy (> 99%), but lower in summer

Page 16 – January-29-18

Environment and Climate Change Canada

Ice / water retrieval from RADARSAT-2 Komarov and Buehner, TGRS, 2017

- Assimilation of SAR data could improve ice analyses, particularly in narrow channels – very high resolution, not limited by cloud or solar illumination
- Challenge: Backscatter signal from ice and open water often overlap
- Most conventional automated methods for ice/water classification do not provide sufficiently high level of confidence required for data assimilation

Goal: Develop a technique for automated classification of RADARSAT-2 data (**ice / water / ambiguous**) based on estimation of probability of ice/water

Environment and Climate Change Canada Page 19 – January-29-18

Key variables related to presence of ice

After some exploratory work, chose the following variables:

- 1. Difference between wind speed from SAR (HH-HV) [Komarov et al., TGRS, 2014] and from NWP
- 2. HH-HV spatial correlation
- 3. Spatial standard deviation of SAR-derived wind speed

Each is computed over a 2km x 2km window (41x41 50m pixels)

Benefits:

- Independent of instrument parameters (incidence angle, noise floor)
- Indirect use of HH and HV backscatter signals
- Good potential to transfer to other SAR instruments (e.g. RCM: RADARSAT Constellation Mission)

Page 20 – January-29-18

Key variables related to presence of ice Probability distributions based on > 10,000 images

Presence of ice/water is obtained from CIS manual image analyses

Page 21 – January-29-18

Environment and Climate Change Canada

Key variables related to presence of ice Probability of ice as function of 3 variables

3D Ice Probability Model (IPM)

$$P(\vec{x}) = \frac{1}{1 + e^{f(\vec{x})}}$$

Probability of ice computed from 3 predictors using Bayes and logistic regression fit to 5 years of training data (*f* is 3rd order polynomial of 3 predictors)

Probability of ice computed from IPM at each location and classified as follows:

 $\begin{array}{ll} \mathsf{P}(\mathsf{x}) > 0.95 & \textbf{ice} \\ \mathsf{P}(\mathsf{x}) < 0.05 & \textbf{water} \\ \mathsf{Else} & \textbf{ambiguous} \end{array}$

Also used an adaptive probability threshold to slightly improve accuracy

Page 23 – January-29-18

IPM Testing Results

Using CIS image analyses for verification

Independent testing subset (Year 2013) considering only 0 and 100% concentrations

P_{threshold} – adaptive thresholding

	# samples	Classified [%]	Misclassified [%]	Unknown [%]	Accuracy [%] Nc / (Nc + Nm)
Pure ice	990,638	83.78	0.24	15.98	99.71
Pure water	1,490,240	54.02	0.13	45.86	99.76
Pure ice & water	2,480,878	65.90	0.18	33.92	99.73

Environment and Climate Change Canada Environnement et

Changement climatique Canada

Page 24 – January-29-18

Results with all ice concentration values Fraction of SAR ice/water retrievals as a function of CIS manual image analysis concentration

Fraction of ice/water samples

$$F_i = N_i / (N_i + N_w)$$

$$F_w = 1 - F_i$$

Different scales of IPM model and Image Analysis polygon:

Image Analysis polygon

Verification against IMS

Independent IMS product is available daily, consistent coverage over entire domain of RADARSAT-2 images.

IPM model was applied to all available 7411 RADARSAT-2 images in 2013.

	# samples	Classified [%]	Misclassified [%]	Unknown [%]	Accuracy [%] Nc / (Nc + Nm)
Ice	24,719,977	75.81	2.58	21.61	96.71
Water	12,813,635	55.53	2.90	41.57	95.04
Ice & Water	37,533,612	68.89	2.69	28.43	96.24

Environment and Climate Change Canada Page 26 – January-29-18 Environnement et

Changement climatique Canada

Example comparison with IMS Ice edge dynamics – one of the worst cases

Ice concentration from ice/water retrievals Obtained by counting fraction of ice retrievals

Ice/water retrievals at 2.05 km spacing

Ice concentration based on 3x3 ice/water retrievals

10

20

30

Environment and Climate Change Canada

Environnement et Changement climatique 0

50

70

80

60

100

90

Sea ice data assimilation

Other ongoing and future work

- Apply approach used for AVHRR also to VIIRS data (similar channels, higher resolution, larger swath width)
- Based on high accuracy of ice/water RADARSAT-2 retrieval, evaluate impact of assimilating in 3DVar for estimating ice concentration
- Currently developing ice thickness analysis (3DVar) based on SMOS+CryoSat-2, together with estimated analysis error stddev (KF)
- Improve passive microwave retrievals by using RTM to account for atmospheric effects and using dynamic tie-points
- Started migrating sea ice and SST analyses into the modular software framework used for atmospheric 4D-EnVar → facilitate strongly coupled DA of atmosphere-ice-upper-ocean (through H and B)

Page 29 – January-29-18

