

Merged sea-ice thickness product from complementary L-band and altimetry information

AWI Team	Stefan Hendricks
	Robert Ricker
	Stephan Paul

University Hamburg Lars Kaleschke

Team Xiangshan Tian-Kunze

ESA CCI TeamEero RinneFMIStefan KernUniversity HamburgKirill KhvorostovskyUniversity St. Petersburg

Managing Expectations

Digital Elevation Model with 25cm Resolution (Airborne Laserscanner)

100 m

No satellite or model can resolve true variability of sea ice

SIT Remote Sensing

Altimeter

Laser

Pulse-limited (Ku-Band)

Pulse-limited (Ka-Band)

SAR / SAR interferometric (Ku-Band)

L-Band

Radiometer

Pioneering work by with ERS (Laxon et al. 2003) Breakthrough for sea ice altimetry with CryoSat-2

Sea Ice Radar Altimetry

Step 2 Step 1 Freeboard to **Freeboard Retrieval** Thickness Conversion A Priori Information Snow Depth A Priori Information Sea Ice Range Snow Depth Snow Density Snow Freeboard · Snow Depth Sea Ice Density Ice Freeboard Water Density Sea Ice Thickness (Average Values) **Main Uncertainty Sources**

Scale: 300 meter - 10+ km

- Freeboard uncertainties
- Unknown regional and temporal variability of snow depth, snow density and sea ice density

HELMHOLTZ

Main Uncertainty Sources

- Complex radar echos over rough sea ice surfaces
- Potential bias from radar backscatter in snow layer
- Snow wave propagation

Radar Echo Waveforms

Evolving radar altimeter concepts (Improved footprints > less surface type mixing) Per echo waveform surface type and range

Radar Altimeter Processing Chain

Primary Data

Geolocated Radar Echoes

External Auxiliary Data

Mean Sea Surface

Sea ice type / MYI area fraction

Sea Ice Concentration

Snow Depth / Density

Orbit Freeboard Example

Radar Altimetry - Coverage

Daily Trajectory

Weekly Grid

Monthly Grid

CryoSat-2 – Central Arctic Volume

SIV : Central Arctic Ocean (< 88N°) Sea Ice Volume in 1000 km³

January 2018 (cs2awi v2.0)

Radar Altimetry – Validation

(CryoSat Mean: 2.57m, Airborne-EM Mean: 2.65m)

Radar Altimetry – Precision

Monthly collection of daily cross-overs (25km window SIT differences)

- Potential error sources: Range Noise | Sea-Surface Height | Selection Bias
- ▷ Average CryoSat SIT precision: ~ 40 cm

Product Intercomparison

Long-Term Data Records

Envisat thickness retrieval

- calibrated at Envisat / CryoSat-2 overlap
- consistent auxiliary datasets and snow assumptions

Radar Altimetry Summary

	Strength / Opportunities	Weaknesses / Threats
Data Record	 Longest continuous (2002) ERS back to 1993 Sentinel-3 program Dual-Band Altimetry 	 No summer data (May – Sept.) Sentinel-3 not high inclination (S3/Envisat pole hole)
Uncertainty	 No indication of large scale bias in spring (CryoSat) Auxiliary data may improve 	 Local uncertainty significant Thin ice under-represented Snow is not an observation "uncertainty of uncertainty"
Operational Status	 Several centers Copernicus Climate Change Service (C3S) in prep 	
Timeliness	 CryoSat-2 (2 days) Sentinel-3 (3 hrs) 	

L-Band Radiometry

SMOS ice thickness: Support to Science Element Utilize low-frequency radiometry for sea ice

Principle of L-Band Radiometry

HELMHOLTZ

L-Band Radiometry Summary

	Strength / Opportunities	Weaknesses / Threats
Data Record	 Daily global coverage 	No summer dataSMOS follow-on?
Uncertainty	 Impact of snow might lead to snow depth information 	Upper thickness limitLarge footprint
Operational Status	 Operational (U. Hamburg) 	
Timeliness	 SMOS (2 days) 	

CryoSat-2 / SMOS Data Fusion

ESA Project: SMOS+ Sea Ice

Develop merged thickness prototype

Data Fusion Concept

Bridging Temporal Coverage

0.0 0.2 0.4 0.6 0.8 1.0 1.2 SMOS Sea-Ice Thickness (m)

Merged Product – Background Field

Optimal Interpolation: Innovation of background (weighted mean) by observations

Weekly Thickness Fields

Merged Product – Coverage

Merged Product – Validation

	Strength / Opportunities	Weaknesses / Threats
Data Record	 Weekly gapless 	 No summer data
Uncertainty	 The best of two worlds (full thickness resolution) 	 Smoothing removes localized features Uncertainties depend on input where one method dominates
Operational Status	 SMOS & CryoSat-2 Sea Ice PDS in Q4 2018 	 Only reprocessed product
Timeliness	 Improved background field for NRT (2 day) service 	

Conclusions – Product Guide

	Use	Don't use
Altimetry	 First-year / multi-year sea ice 	 Young thin ice (freeze-up)
	 Climate applications 	Areas close to ice edge
(longest data record)	 High coverage & temporal resolution 	
Radiometry	 Daily observations of thin ice 	 Older first-year, multi year ice
Merged	 Weekly observations for entire northern hemisphere and thickness range 	 You want to use observation operators You want to assimilate observations individually

Thank you!

Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C. (2017):

A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data The Cryosphere

ftp://data.meereisportal.de

user: altim

password: altim

/altim/sea_ice/product/north/cryosat2-smos/cs2smos_v1.4/