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1.1 INTRODUCTION

Ensemble prediction is a method to predict the probability distribution of forecast states, given a
probability distribution of random analysis error and model uncertainties. In ensemble systems, the
impact of analysis and model uncertainties on forecasts states are simulated by starting the ensemble of
forecasts from different initial conditions, and computing each forecast evolution using schemes designed
to simulate model uncertainties. Since 1992, ensemble prediction systems have been part of the operational
forecasting suite at ECMWF (Palmer et al., 1993) and NCEP (Toth and Kalnay, 1993, 1997). A general
description of the first version of the ECMWF EPS can be found in Molteni et al. (1996), and a description
of a more recent version of the operational system is given by Leutbecher and Palmer (2008).

The implementations by ECMWF and NCEP in the early 90-s were followed in 1995 by MSC Canada
(Houtekamer et al., 1996b,a) and in 1998 by BoM Australia. The reader is referred to Buizza et al.
(2005) for a comparison of the performance of the ECMWF, MSC and NCEP ensemble systems over the
northern hemisphere, and to Bourke et al. (2005) for a comparison of the performance of the ECMWF
and the BoM systems over the southern hemisphere. In the past decade, other meteorological centres have
started producing routinely ensemble-based probabilistic forecasts, see for example Park et al. (2008) for
comparison of the performance of eight global ensemble prediction systems archived within the TIGGE
project. The reader is referred to Hagedorn et al. (2012) for a more recent comparison of the performance
of the ECMWF EPS and multi-model ensemble systems defined by the TIGGE ensembles.

Since 12 September 2006, the ECMWF operational ensemble system has been running with a variable
resolution (VAREPS, see Buizza et al. (2007) for a description of the system), with 51 members, one
starting from unperturbed initial conditions (the control forecast) and 50 from perturbed initial conditions
defined by adding small amplitude perturbations to the operational analysis.

Since 11 March 2008, the medium-range variable-resolution ensemble system (VAREPS) has been merged
with the monthly ensemble system, which has been operational at ECMWF since October 2004 (see Vitart
(2004) for a description of the system). The merged VAREPS/monthly system (hereafter simply called
the Ensemble Prediction System, EPS; see Vitart et al., 2008) runs twice-a-day, at 00 and 12 UTC. On
Mondays and Thursdays, the 00 UTC forecasts are extended to day 46.

The atmospheric model IFS is coupled from initial time to the ocean model NEMO (see Madec, 2008). The
coupling uses the single executable framework described by Mogensen et al. (2012b). The ocean initial
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conditions come from the near-real-time component of the operational ocean analysis (NEMOVAR, see
Mogensen et al., 2012a) and from the Ocean ReAnalysis System 4 (ORAS4, see Balmaseda et al., 2013)
for re-forecasts. Further details on the coupling are given in 3.1.

The 51 EPS non-linear integrations are performed twice a day, with initial times 00 and 12 UTC, up to
forecast day 15, with a TCo639 resolution from day 0 to day 15. They are extended twice weekly with
lower resolution (TCo319) from day 15 to day 46. In the vertical, all integrations have 91 levels, with the
model top at 1 Pa.

On 11 March 2008, a new ensemble re-forecast suite has been implemented to estimate the model
climatological distribution (see Hagedorn, 2008 for a description of the system). The re-forecast suite
is based on 11-member ensembles, integrated with the same model version used in the operational EPS,
and run twice weekly (on Mondays and Thursdays) for the same calendar day over the past 20 years
(in 2014, from 1994 to 2013). Thus, every week 440 ensemble members ((11 + 11) × 20) can be accessed
to estimate the model climatology and/or for further calibration purposes. The initial conditions for the
re-forecasts are defined by ERA-Interim analyses (Dee et al., 2011). Re-forecasts are used to generate
some operational medium-range (e.g. the Extreme Forecast Index) and monthly products.

The first EPS configurations were designed on the notion that forecast uncertainty is dominated by error
or uncertainty in the initial conditions (see Harrison et al., 1999). This was consistent with studies that
show that, when two operational forecasts differ, it is usually differences in the analyses rather than
differences in model formulation that are critical to explaining this difference. Later on it was recognized
that random model errors due to physical parameterizations and the effects of subgrid-scale processes
could affect the forecast quality too. Two schemes are used to represent model uncertainties in the EPS
since November 2010: (i) the Stochastically Perturbed Parameterization Tendencies scheme (SPPT) and
(ii) the Stochastic Kinetic Energy Backscatter scheme (SKEB). They simulate the effect on forecast
quality of random model errors due to physical processes and subgrid-scale effects.

The SPPT scheme was first implemented in October 1998 and referred to originally as stochastic physics
(Buizza et al., 1999b). The scheme perturbs the tendencies by terms that are given by a random pattern
times the net parameterized physics tendencies. The random pattern varies horizontally and with time;
each ensemble member uses a different realisation of the random pattern. Two major revisions of the
SPPT scheme took place in September 2009 (Palmer et al., 2009) and in November 2010. As in the original
scheme, tendency perturbations are given by a multiplicative noise term based on the net parameterized
physics tendencies. In the revised SPPT scheme, the random pattern that defines the perturbations varies
smoothly in space and time in contrast to the original scheme. The random numbers at a grid point are
given by a truncated Gaussian distribution. The pattern is defined as the sum of three independent
random patterns with horizontal correlation scales of 500, 1000 and 2000km and correlation time scales
of 6 h, 3 d and 30 d, respectively. The standard deviation of the three patterns decreases with increasing
spatial and temporal scale from 0.52 to 0.18 and finally to 0.06. In November 2016, a global constraint was
introduced in SPPT that modifies the perturbations in such a way that the global integral of the perturbed
physics tendency is equal to the global integral of the unperturbed physics tendency (Leutbecher et al.,
2016). This global constraint reduces the precipitation minus evaporation imbalance generated by lack of
humidity conservation in SPPT.

The SKEB scheme perturbs the vorticity tendencies with stochastic noise that is given by an evolving
3-dim pattern times a term that is proportional to the square root of an estimate of the kinetic
energy dissipation rate in the numerical model Berner et al. (2009). The dissipation rate is based on
the contribution from deep moist convection only; note that earlier versions also included contributions
from numerical dissipation and orographic gravity wave drag. The latter contributions were deactivated
as they led to unrealistic ensemble spread. The correlation time of the pattern is 7 h and the spatial
correlations have been estimated from coarse-graining experiments Palmer et al. (2009).

There are two key advantages of using ensemble-based probabilistic forecasts instead of single forecasts.
Firstly, they provide a more complete estimation of the future forecast states, since they not only provide
the most likely scenario but also the probability that alternatives might occur. Secondly, they provide
more consistent forecasts (Zsoter et al., 2009). Fig. 1.1 shows a schematic illustration of the phase-space
evolution of the probability distribution function (PDF) of analysis error throughout the forecast range.
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Figure 1.1 A schematic illustration of the growth of an isopleth of the forecast error probability
distribution function, from (a) initial phase, to (b) linear growth phase, to (c) nonlinear growth phase, to
(d) loss of predictability. See text for further details.

A specific isopleth (e.g. the 1 standard deviation isopleth) is illustrated. It is assumed that the initial
time PDF is a Gaussian distribution. At initial time (Fig. 1.1(a)), the isopleth is shown as isotropic, i.e.
bounding an n-sphere, where the dimension of phase space n is of the order of (O(109)) for the ECMWF
operational forecast model). In general, this error will not be isotropic—analysis error is likely to be
larger along directions which are less well observed, and vice versa. However, at least in principle, it
is straightforward to define an inner product on phase space, with respect to which the initial PDF is
isotropic. This inner product, defined from the analysis error covariance matrix, plays a fundamental role
in the theory of singular vectors discussed below.

In the early part of the forecast, error growth is governed by linear dynamics. During this period
an initially spherical isopleth of the PDF will evolve to bound an n-dimensional ellipsoidal volume
(Fig. 1.1(b)). The major axis of the ellipsoid corresponds to a phase-space direction which defines the
dominant finite-time instability of that part of phase space (relative to the analysis error covariance
metric). The arrow shown in Fig. 1.1(b) points along the major axis of the ellipsoid. It can be thought of
as evolving from the arrow shown in Fig. 1.1(a). Note that the arrows in Fig. 1.1(a) and Fig. 1.1(b) are
not parallel to one another. This illustrates the non-modal nature of linear perturbation growth.

The arrows at initial and forecast time define the dominant singular vector at initial and final time (with
respect to the analysis error covariance metric). At forecast time, the dominant singular vector defines
the dominant eigenvector of the forecast error covariance matrix. See Section 1.3.1 for more details.

The growth of the (isopleth of the) PDF between Fig. 1.1(b) and Fig. 1.1(c) describes a nonlinear evolution
of the PDF. In Figs 1.1(c) the PDF has deformed from its ellipsoidal shape in Fig. 1.1(b). The nonlinear
deformation will cause the PDF to evolve away from a Gaussian distribution. Put another way, in the
nonlinear phase, the PDF in any given direction is partially determined by perturbations which, in the
linear phase, were orthogonal to that direction. Finally, Fig. 1.1(d) shows (schematically) the situation
where the evolved PDF has effectively become indistinguishable from the system’s attractor, so that all
predictability has been lost.

1.2 INITIAL CONDITION PERTURBATIONS

The operational EPS samples initial uncertainty using perturbations from an ensemble of data
assimilations (EDA) and perturbations constructed from the leading singular vectors since June 2010.
The perturbations from the EDA replace the perturbations that were based on evolved singular vectors
prior to June 2010.
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The observed values are perturbed with stochastic noise in the EDA. The variance of the observation
perturbations is given by the observation error variance estimate that is used in the data assimilation. In
addition, model uncertainties are represented in the EDA using the SPPT scheme. The EDA consists of 25
perturbed analyses with an outer loop resolution of TCo639. Further details about the data assimilation
system and the EDA are provided in Part II of the IFS documentation and by Isaksen et al. (2010).
The EDA also provides the operational high-resolution 4D-Var with an estimate of the flow-dependent
variations of the background error variances.

If all relevant sources of uncertainty were represented accurately in the EDA, it should provide a reliable
sample from the distribution of initial uncertainties. Ensemble prediction experiments using only EDA
initial perturbations indicate that this goal has not been achieved yet. Therefore, Buizza et al. (2008)
propose the hybrid approach of combining EDA perturbations with singular vector perturbations. The
perturbations from the EDA sample errors that have grown in the past while the perturbations based on
singular vectors sample structures that are likely to dominate forecast error in the future, say at Day 2
and beyond.

1.3 SINGULAR VECTORS

The number of degrees of freedom of the operational ECMWF model is many orders of magnitude larger
than the largest practicable ensemble size. This raises the question of whether any particular strategy
is desirable in sampling the initial PDF. If initial errors can occur independently in all the phase-space
directions, then a strategy of random-under-sampling could lead to an EPS whose reliability was poor,
especially for cases of small ensemble spread. In particular, if the spread from a randomly under-sampled
ensemble was found to be small on a particular occasion, this could either be because the flow was
especially predictable, or because the ensemble perturbations poorly sample the unstable subspace in
which the analysis error lay. From a credibility perspective, it is important to try to minimize the latter
type of occurrence.

An alternative strategy is to base the perturbations on the leading singular vectors. Clearly, by focusing
on the unstable subspace, the cases of small spread being associated with large forecast error should be
minimized, at least in the linear and weakly nonlinear range. In addition to this, there are several related
reasons why the initial perturbations for the ECMWF EPS are based on the dominant singular vectors.

Firstly, as shown by Rabier et al. (1996) and Gelaro et al. (1998), the sensitivity of day-2 forecast error
to perturbations in the initial state projects well into the space of dominant singular vectors. Rabier et al.
have shown that cases of severe forecast failure can be dramatically improved if the analysis is modified
using the sensitivity perturbations.

Secondly, provided the metric or inner product for the singular vectors is an accurate reflection of
the analysis error covariance matrix then, as mentioned, the evolved singular vectors point along the
largest eigenvectors of the forecast error covariance matrix. As such (see Ehrendorfer and Tribbia, 1997),
perturbations constructed from the dominant singular vectors represent the most efficient means for
predicting the forecast error covariance matrix, given a pre-specified number of allowable tangent model
integrations.

Thirdly, singular vector perturbations may provide a relatively efficient means of sampling the forecast
error PDF in the nonlinear range, particularly during transitions in weather regimes. For example,
Mureau et al. (1993) have shown a case where the singular vector perturbations were successful in
capturing a major transition to blocking, where random perturbations were inadequate. Gelaro et al.
(1998) have documented further such cases. A more systematic study of the ability of ensembles
to describe the probability of regime transitions in the weakly nonlinear forecast range has been
made by Trevisan et al. (2001) using an intermediate-complexity model of the extratropical circulation.
Relatively small ensembles initialised using firstly singular vectors, and secondly local Lyapunov vectors,
were compared with a large Monte-Carlo ensemble based on random perturbations. It was found that
small ensemble spread from the singular-vector ensemble was a reliable indicator of small ensemble spread
from the Monte-Carlo ensemble. By contrast, small ensemble spread from the Lyapunov-vector ensemble
was a much less reliable indicator of small spread from the Monte-Carlo ensemble.
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Fourthly, in practice only imperfect information about the initial PDF is available. Hence it is difficult
to even define a truly random initial sampling.

In the current system, each EPS perturbation is a linear combination of singular vectors with maximum
growth computed using a total energy norm, over a 48 hour time period. The leading 50 singular vectors
are used for each extra-tropical hemisphere, and the leading 5 singular vectors are used in each of up
to 6 tropical areas. They are computed at T42 resolution and with 91 vertical levels. The assumption
underlying the linear combination is that initial error is distributed in the space spanned by the singular
vectors according to an isotropic Gaussian distribution. A Gaussian sampling technique is used to sample
realisations from this distribution (see Leutbecher and Palmer (2008) and Section 2.3).

The reader is referred to Buizza and Palmer (1995) for a description of the singular vector computation
in the extra-tropics, and to Barkmeijer et al. (2001) for a discussion of the computation of the tropical
singular vectors. The reader is also referred to Palmer et al. (1998) for a discussion of the sensitivity of the
singular vector structure to the metric used to measure perturbation growth, to Hoskins et al. (2000) for
an analysis of the nature of singular vector growth, and to Barkmeijer et al. (1998) and Lawrence et al.
(2009) for comparisons of singular vectors computed using a total energy metric and singular vectors
based on a Hessian metric. Leutbecher and Lang (2013) study the reliability of ensemble variances in
subspaces spanned by the leading singular vectors. They also examine the sensitivity of this reliability to
the dimension of the singular vector subspace and the horizontal resolution of the singular vectors.

1.3.1 Formulation of the singular vector computation

One way to define singular vectors is by means of a maximization problem. The scalar which has to be
maximized can be written as

[EMx, Mx]

[Dx, x]
(1.1)

where [ , ] denotes the Euclidean inner product, [x, y] =
∑

(xiyi), and D and E are positive definite
operators. The operator M is the propagator of the tangent model. It assigns to a particular vector x the
linearly evolved vector Mx for a given forecast time and with respect to a reference trajectory. Hence,
the scalar defined by (1.1) is the ratio between the E-norm of the evolved vector x and the D-norm of
x at initial time. Notice that the norm at initial and final time may differ. The leading singular vector
has the property that it maximizes the scalar, the second singular vector maximizes the scalar in the
space D-orthogonal to the leading singular vector, and so forth. In this way, one obtains a set of singular
vectors which are D-orthogonal at initial time and E-orthogonal at final time. The actual computation
of the singular vectors in the IFS is done by solving an equivalent eigenvalue problem. Observe that the
solutions of the maximization problem (1.1) also satisfy the generalized eigenvalue problem (1.2) given by

M∗EMx = λDx (1.2)

where M∗ is the adjoint of M. The defining equation (1.2) can be generalized by activating operators in
the singular vector computation, see Section 1.3. It is, for instance, possible to set the state vector
to zero outside a prescribed area at optimization time, by using a projection operator P (Buizza,
1994). Consequently, the growth of singular vectors outside the target area is not taken into account
in the actual computation. In using this projection operator, the eigenvalue problem (1.2) becomes
M∗P∗EPMx = λDx. To keep the notation as simple as possible, these additional operators will be
omitted from the basic eigenvalue problem (1.2).

The operator D determines the properties by which the singular vectors are constrained at initial time.
As such, it can be interpreted as an approximation of the inverse of the analysis error covariance matrix
Pa. Currently, there are two methods to compute singular vectors, depending on the form of D. Both
methods will be discussed in Subsections 1.3.2 and 1.3.3.
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1.3.2 Use of the total energy norm

When using the total energy norm, or any other simple operator, at initial time, the generalized eigenvalue
problem (1.2) can be simplified to an ordinary eigenvalue problem. In this case the D-norm of x reads as

[x, Dx] =
1

2

∫ 1

0

∫

Σ

{

−∆−1ζx · ζx − ∆−1Dx · Dx +
cp

Tref
T 2
x

+ wq
L2

cond

cpTref
q2
x

}

dΣ
∂p

∂η
dη

+
1

2

∫

Σ

RdryTrefPref ln(πx) ln(πx) dΣ (1.3)

where ζx, Dx, Tx and ln πx stand for the vorticity, divergence, temperature, specific humidity and
logarithm of the surface pressure component of the state vector x, and cp is the specific heat of dry
air at constant pressure, Lcond is the latent heat of condensation at 0◦C, Rdry is the gas constant for dry
air, Tref = 300K is a reference temperature and Pref = 800hPa is a reference pressure. The parameter wq

defines the relative weight given to the specific humidity term. The integration over the sphere and in

the vertical are denoted by
∫

Σ
dΣ and

∫ 1

0
dη, respectively.

Since the operator D is a diagonal matrix, one can easily define a matrix C so that C2 = D−1. Multiplying
both sides of (1.2) to the left and right with C, yields the equation

CM∗EMCx = λ x (1.4)

which can be solved using the Lanczos algorithm, see Section A.1. The energy metric is believed to be a
useful approximation to the analysis error covariance metric (Palmer et al., 1998).

1.3.3 Use of the Hessian of the 3D-Var objective function

In the incremental formulation of 3D-Var, the Hessian of the objective function ℑ can be used as an
approximation of the inverse of the analysis error covariance matrix. The objective function has the form

ℑ(δx) =
1

2
δxTB−1δx +

1

2
(Hδx − d)TR−1(Hδx − d) (1.5)

and the increment δxa where ℑ attains its minimum, provides the analysis xa which is defined by adding
δxa to the background xb so that

xa = xb + δxa (1.6)

The operators B and R are covariance matrices of the background and observation error respectively and
d is the innovation vector given by

d = y − Hxb (1.7)

where y is the observation vector and H is a linear approximation of the observation operator in the
vicinity of xb.

The Hessian ∇∇ℑ of the objective function is given by

∇∇ℑ = B−1 + HTR−1H (1.8)

Provided that the background error (xb − xt) and the observation error (y − Hxt) are uncorrelated,
with xt the true state of the atmosphere, the Hessian ∇∇ℑ is equal to the inverse of the analysis error
covariance matrix Pa. This follows by noting that the objective function is quadratic and attains its
unique minimum at δxa and consequently, by using (1.6),

B−1[xa − xt − (xb − xt)] + HTR−1[H(xa − xt) + Hxt − y] = 0 (1.9)

Rewriting (1.9) gives

(B−1 + HTR−1H)(xa − xt) = B−1(xb − xt) − HTR−1(Hxt − y) (1.10)

Using the assumption that the background and observation error are uncorrelated the above equation
implies that

(B−1 + HTR−1H)Pa(B−1 + HTR−1H)T = (B−1 + HTR−1H)T (1.11)
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Now by multiplying each side of (1.11) to the right with its transpose, the desired result follows.

The defining eigenvalue problem for the singular vectors becomes

M∗EMx = λ ∇∇ℑ x (1.12)

Since the objective function is quadratic in the incremental formulation, the Hessian applied to a vector
∇∇ℑ x in (1.12) can be evaluated as finite difference of two gradients: (∇∇ℑ)x = ∇ℑ(x + xb) −∇ℑ(xb).
The generalized eigenvalue problem (1.12) is solved by using the Jacobi–Davidson algorithm, see
Section A.2.

APPENDIX A. EIGENVALUE ALGORITHMS

A.1 The Lanczos algorithm

Algorithms based on Lanczos theory are very useful to solve an eigenvalue problem when only a few of
the extreme eigenvectors are needed. It can be applied to large and sparse problems. The algorithm does
not access directly the matrix elements of the operator that defines the problem, but it gives an estimate
of the eigenvectors through successive application of the operator.

Consider the eigenvalue problem
Ax = σ2

i x (A.1)

where the matrix A is N × N dimensional, and symmetric. Without loss of generality, we can also suppose
that it is real.

If A is a real, symmetric matrix, then there exists an orthogonal real matrix Q such that

QTAQ = D(λ1, . . . λN ) (A.2)

where D(λ1, . . . , λ2) is a diagonal matrix, and QT denotes the transpose of Q (Schur decomposition
theorem).

The Lanczos algorithm does not directly compute the diagonal matrix D, but it first computes a partial
transformation of the matrix A using a tridiagonal matrix T

QTAQ = T (A.3)

with

T =





















α1 β2 0 . . . .
β2 α2 β3 0 . . .
0 β3 . . . . .
. 0 . . . 0 .
. . . . . βJ−1 0
. . . 0 βJ−1 αJ−1 βJ

. . . . 0 βJ αJ





















(A.4)

and with
Q = [q1, . . . , qJ ] (A.5)

where the vectors qj are column vectors, and where the number of iterations J is much smaller than the
dimensionality of the problem, J ≪ N . Then, the Lanczos algorithm finds the diagonal decomposition
of T

T = STDS (A.6)

The elements of the diagonal matrix D are an estimate of the eigenvalues of A, and an estimate of the
eigenvectors are given by Y = [y1, . . . , yj ], with

Y = QS (A.7)

The actual computation is performed by writing (A.3) as

AQ = QT (A.8)
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Equating columns of (A.8), it follows that

Aqj = βj−1qj−1 + αjqj + βjqj+1 (A.9)

for j = 1, . . . , J . The orthogonality of the vectors qj implies that

αj = qT
j Aqj (A.10)

Moreover, if
rj = (A − αjI)qj − βj−1qj−1 (A.11)

is non-zero, then

qj+1 =
rj

βj
(A.12)

where βj = ±
√

〈rj ; rj〉. An iterative application of these equations, with a randomly chosen starting
vector q1, defines the Lanczos iterative procedure. The total number of iterations J determines the
accuracy of the computation. As this number increases, more eigenpairs can be separated from the others,
independently from the choice of the starting vector q. This separation starts from the boundaries of the
eigenvalue spectrum. The accuracy of the eigenvectors is less than the accuracy of the singular values,
say to order ε when the precision of the singular values is of order ε2.

The reader is referred to Golub and van Loan (1983) for a theoretical description of the Lanczos algorithm.
The Lanczos code is available in NAG issue 17. In the IFS, the Lanczos code in subroutine CONGRAD
is used to compute the singular vectors used in the operational EPS.

A.2 The Jacobi–Davidson algorithm

The generalized eigenproblem
Ax = λBx (A.13)

is usually handled by bringing it back to a standard eigenproblem

B−1Ax = λx (A.14)

The matrix B−1A is in general nonsymmetric, even if both A and B are symmetric. However, if B is
symmetric and positive definite, the B-inner product is well defined. The matrix B−1A is symmetric in
this inner product if A is symmetric:

[w, B−1Av]B = [Bw, B−1Av] = [w, Av] = [Aw, v] = [B−1Aw, v]B (A.15)

The proposed method to solve (A.14) constructs a set of basis vectors V of a search space v, c.f. the
Lanczos method. The approximate eigenvectors are linear combinations of the vectors V. The classical
and most natural choice for the search space v, for instance utilized in the Lanczos method, is the so-called
Krylov subspace, the space spanned by the vectors

v, B−1Av, (B−1A)2v, . . . , (B−1A)i−1v (A.16)

This i-dimensional subspace is denoted by Ki(v, B−1A). The vector v is a starting vector that has
to be chosen. The Krylov subspace is well suited for computing dominant eigenpairs since the vector
(B−1A)i−1v points more and more in the direction of the dominant eigenvector of B−1A for increasing i.

Given a search space v, the approximate eigenpair (θ, u) of (A.15) is a linear combination of the basis
vectors of v so that

u = Vy (A.17)

A suitable criterion for finding an optimal pair is the Galerkin condition that the residual

r = B−1Au − θu = B−1AVy − θVy (A.18)

is B-orthogonal to the search space v. Hence

VTBr = 0 (A.19)
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and consequently, using (A.19),
VTAVy − θVTBVy = 0 (A.20)

Note that the resulting eigenproblem is of the dimension of the search space, which is generally much
smaller than of the original problem. The basis vectors are usually orthonormalized so that VTBV = I.
Approximate eigenpairs that adhere to the Galerkin condition are called Ritz pairs.

It can be shown that the residuals r1, r2, . . . , ri form a B-orthogonal basis for Ki(r1, B
−1A) when the

approximate eigenpairs are computed according to (A.17).

A.3 Solution method

As was stated before, the natural search space for the generalized eigenvalue problem is the Krylov
subspace Ki(v, B−1, A). This basis can be generated by expanding the basis by new residual vectors.
The problem in the construction of a basis for this space is that operations with B−1 are needed. Since
in our application the inverse of B is not known explicitly, its action is approximated by the Conjugate
Residual method (CR). To compute the vector

r = B−1r̃ (A.21)

one iteratively solves the system
Br = r̃ (A.22)

Iterative solution methods require, apart from vector operations, only multiplications with B. The vector
r can in principle be determined to high accuracy. This, however, may require many multiplications with
B and hence may be very expensive. Therefore, the action of B−1 is approximated to low accuracy, by
performing only a few steps with an iterative solution method. The number of iterations is controlled by
NINNER. The subspace generated in this way is not a Krylov subspace and the basis vectors are not the
residuals (A.19) but only approximations to it. As a consequence they are not perfectly B-orthogonal.
The orthogonalization has to be done explicitly.

The complete algorithm can be summarized as follows.

(i) Choose a starting vector v.
(ii) Compute Bv, B-normalize v.
(iii) Repeat the steps (iv)–(x) NITERL times.
(iv) Compute AV, VTAV
(v) Solve small eigenproblem VTAVy = θy.
(vi) Select Ritz value θ and y.
(vii) Compute Ritz vector u = Vy and residual r̃ = AVy − θBVy.
(viii) Compute approximately v = B−1r̃ with the CR-method.
(ix) B-orthonormalize new v against V.
(x) Expand V with the resulting vector.

The matrix V contains the basis for the search space, the vector v contains the new basis vector and
(u, θ) is an approximate eigenpair. In step (vi) the pair with the largest θ is selected because only the
dominant part of the spectrum is of interest. However, if the eigenpair approximation reaches a certain
accuracy ε (XKAPA in namelist NAMLCZ), i.e., r̃ = Au − θBu ≤ ε, a smaller θ is selected. In step (viii)
a few CR steps are performed to approximate the action of B−1. In step (ix), the Modified Gram–Schmidt
procedure is used for reasons of numerical stability. For a more detailed description of the Jacobi–Davidson
algorithm, the reader is referred to Sleijpen and van der Vorst (1996)
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Chapter 2

Computational details: initial perturbations

Table of contents

2.1 Introduction

2.2 Singular vectors

2.2.1 The singular vector code

2.2.2 Computation of singular vectors

2.3 Initial perturbation component based on singular vectors

2.4 EDA component of the initial perturbations

2.1 INTRODUCTION

For a description of the evolution of the ECMWF Ensemble Prediction System (EPS), the reader is
referred to Molteni et al. (1996), Buizza et al. (1998, 1999a, 2003, 2007), Leutbecher and Palmer (2008)
and Buizza et al. (2008). As mentioned in Section 1.1, for each initial date, an ECMWF ensemble
comprises one ‘control’ forecast, which is a forecast started from the operational analysis, and Nens

perturbed forecasts. The initial conditions for the perturbed integrations are constructed by adding and
subtracting to the operational analysis Nens/2 perturbations. These perturbations are determined from
perturbations originating from the Ensemble of Data Assimilations (EDA) and from the leading singular
vectors. We begin with a description of the singular vector perturbations. The EDA perturbations are
described in section 2.4.

2.2 SINGULAR VECTORS

The part of the initial perturbations that is based on singular vectors is constructed with a Gaussian
sampling technique (Leutbecher and Palmer, 2008). The sampling uses the leading singular vectors of
each of the following sets of singular vectors:

(i) Initial 50 leading northern hemisphere singular vectors, file ’svifs’.
(ii) Initial 50 leading southern hemisphere singular vectors, file ’svifss’.
(iii) Initial 5 leading singular vectors in up to 6 regions targeted on tropical cyclones, file(s) ’svifs1’ to

’svifs6’.

2.2.1 The singular vector code

The singular vector computation is called from CUN3 in CNT0 or from CUN2 in CUN1, depending on
whether the Hessian of the objective function is used or not. General routines related to the singular
vector computation can be found in the directory ‘sinvect’. The technical routine needed for the Lanczos
and Jacobi–Davidson algorithms is contained in the directory ‘var’ of IFS. Details of the set-up routines
are given in Table 2.1.

Subroutines OPK and OPM are the routines in which the main computational work of the singular vector
computation takes place. The defining equation for the singular vectors (1.2) takes the form

OPK(x) = λ OPM(x) (2.1)

The routine OPM is the identity in case a simple energy norm is used at initial time, or it is equal to
the Hessian of the 4D-Var objective function. In the routine OPK, the propagators of the tangent and
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Table 2.1 Constants in namelist NAMLCZ controlling the singular vector computation. Defaults refer
to LECMWF=TRUE.

Name Type Purpose Default

LANCZOS LOGICAL Activates singular vector computation with Lanczos
algorithm (NCONF = 601)

TRUE

LJACDAV LOGICAL Activates singular vector computations with
Jacobi–Davidson algorithm (NCONF = 131)

FALSE

L USE CONGRAD LOGICAL Use Lanczos algorithm in subroutine CONGRAD TRUE
LOCNORM LOGICAL Switch to localize norm computation in grid space TRUE
ALAT1 REAL

ff

NW corner of local area (defined by point 1)
90.0

ALON1 REAL 0.0
ALAT3 REAL

ff

SE corner of local area (defined by point 3)
30.0

ALON3 REAL 359.9
NLEVMIN INTEGER Minimum level of local area 1
NLEVMAX INTEGER Maximum level of local area NLEVG
LSPTRLC0 LOGICAL Switch to truncate in spectral space at initial (0) time FALSE
LSPTRLC1 LOGICAL Switch to truncate in spectral space at final (1) time FALSE
NWTRMIN0(1) INTEGER Spectral coefficients with total wavenumber outside

window are set to zero
0

NWTRMAX0(1) INTEGER NXMAX
LNEWNORMT0 LOGICAL Switch to re-define the norm at initial time FALSE
NEWNORMT0 INTEGER Re-defines initial norm 1

1: total energy
2: kinetic energy
3: vorticity squared
4: stream function squared
5: rotational kinetic energy

NITERL INTEGER Maximum number of Lanczos or Jacob–Davidson
inner iterations

70

NWEIGL INTEGER Number of singular vectors that are requested 50
XKAPA REAL Relative accuracy of RITZ value to consider a

singular vector as converged
0.01

XMIN RITZ REAL Smallest accepted RITZ value in CONGRAD 1.0
NINNER INTEGER Number of Jacobi–Davidson inner iterations 2
NJDSTOP INTEGER Value of NSTOP when LJACDAV = TRUE 144
LEVOLC LOGICAL Switch to evolve singular vectors TRUE
NEIGEVO INTEGER Number of singular vectors to evolve 35
NLANTYPE INTEGER Determines type of singular vectors 1

1: energy type norms are used
2 and 3: obsolete
4: same as 1 but now NCONF = 131
5: Hessian is used at initial time
6: for computing eigensystem of the Hessian

LSYMCHECK LOGICAL Switch to activate symmetry test for operator OPK FALSE
L SUBSPACE SVS LOGICAL Compute singular vectors in subspace orthogonal to

first N DIM SUBSPACE vectors in file ’sv subspace’
FALSE

N DIM SUBSPACE INTEGER Number Nsub of vectors in ’sv subspace’ used to
define subspace

LSCALC LOGICAL Write inner product coefficients into grib-file ’scalw’ FALSE
LRENORMALIZE LOGICAL Re-normalise initial singular vectors using inner

product defined by ’suscal’
FALSE

The routine SULCZ defines the constants as listed in Table 2.1 and determines the configuration of the singular
vector computation.
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adjoint model are evaluated. Depending on the setting of the constants in NAMLCZ, additional operators
may be active, such as SPTRLCZTL when LSPTRLC0 = TRUE. It truncates the state vector in spectral
space by setting all harmonic coefficients with total wavenumber smaller than NWTRMIN0, or larger
than NWTRMAX0, to zero at initial time.

2.2.2 Computation of singular vectors

The computation of singular vectors for the EPS is organised in the following tasks in family
(/mc/main/HH/sv). Task names are given in parentheses.

(i) Retrieval of the 6-hour forecast which is used to initialise the singular vector trajectory (getini).
(ii) Interpolation of the forecast to T42L91, the resolution of the singular vectors (inidata sv).
(iii) Computation of the extra-tropical initial singular vectors for the southern (sh/sv) and northern

(nh/sv) hemispheres.
(iv) Optimisation regions for the singular vector computations targeted on tropical cyclones are

determined (targets).
(v) Definition of the subspace of extra-tropical singular vectors used when computing the singular

vectors targeted on a tropical cyclone (subspace).
(vi) Computation of up to six sets of singular vectors targeted on tropical cyclones (tc1/sv), (tc2/sv),

. . . (tc6/sv).

At the time of revising this documentation (April 2014), the singular vector resolution is T42L91.

The nonlinear trajectory which defines the tangent-linear system is started from a 6-hour forecast from
the delayed-cutoff stream. The use of a slightly less accurate trajectory does not significantly alter the
singular vector structure and does not compromise the probabilistic skill of the EPS (Leutbecher, 2005).
It has the advantage that more resources can be devoted to the singular vector computation and that
the nonlinear forecasts can be started as soon as the final analysis is available.

For each hemisphere, the leading 50 singular vectors are computed. The tangent-linear model uses an
adiabatic version of the forecast model (apart from vertical diffusion and surface friction).

Initial EPS perturbations in the tropics are included since cycle Cy24r3 (introduced operationally in
January 2002). The leading 5 singular vectors are computed in each of up to 6 target areas. Each tropical
depression/storm (WMO class ≥ 1) reported on the GTS is potentially assigned its own optimisation
region. When the tropical depression/storm could be tracked in the EPS run 12 hours before the initial
time, the track information is used to determine the optimisation region; otherwise the optimisation
region is centred on the reported position of the tropical storm. When the procedure generates more
than 6 target regions, the regions that overlap the most or are closest to each other are merged. In
addition, regions with a very large overlap are merged. If no tropical storm is present in the Caribbean
region an additional optimisation region in the Caribbean is specified (0◦ − 25◦N and 100◦ − 60◦W). The
computation of the singular vectors targeted on tropical cyclones uses a diabatic version of the tangent-
linear model; i.e. large-scale condensation and cumulus convection are represented in the tangent-linear
model (Barkmeijer et al., 2001; Puri et al., 2001).

The computation is triggered for tropical cyclones located between 40◦S–40◦N. Therefore, the
optimisation regions can significantly overlap with the optimisation region of the extra-tropical singular
vector computation. In order to avoid a duplication of perturbations present in the subspace of the extra-
tropical singular vectors, the singular vectors targeted on a tropical cyclone are computed in the subspace
orthogonal to the space spanned by the leading 50 extra-tropical singular vectors (Leutbecher, 2007).

2.3 INITIAL PERTURBATION COMPONENT BASED ON SINGULAR

VECTORS

The perturbations of the initial conditions are obtained from the singular vectors via a multivariate
Gaussian sampling technique described in more detail by Leutbecher and Palmer (2008). Preliminary
experimentation with an earlier version of the Gaussian sampling software is reported by
Ehrendorfer and Beck (2003).
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Table 2.2 SHELL-variables determining the scaling parameter γ which controls the standard deviation
of the sampled Gaussian distribution according to Eq. (2.2).

γ singular vector sets singular vector files

EPSGAMMA initial extra-tropical SVs svifs, svifss
EPSGAMMA * EPSGAMMA TC2INI initial SVs targeted on TCs svifs1,. . . , svifs6

The generation of the ensemble initial perturbations consists of 3 steps. Task names are given in
parentheses.

(i) retrieval of the estimate of analysis error (getea).
(ii) singular vector retrieval and pre-processing (getsvs).
(iii) generation of initial perturbations (rot). The initial condition perturbations are written to a grib-file

’pert.grib’ and are later archived in MARS (task lag/../archive/icp/ml).

Hereafter a brief description of each step is given.

The analysis error estimate is retrieved and smoothed in task (mc/sv/getea). The analysis error estimate
is based on EDA variances. The standard deviation is retrieved on all model levels on a reduced Gaussian
grid corresponding to the singular vector resolution. To avoid spuriously small local values of the analysis
error standard deviation, the fields are smoothed by truncation to total wavenumber ≤ 21.

The linear combination of the singular vectors into initial perturbations is done in task (mc/sv/rot) The
relevant shell-script is sample svs in scripts/gen. The Gaussian sampling is performed in the following
three steps

(i) Computation of the standard deviation BETA of the sampled Gaussian distribution for each set of
singular vectors. This happens by comparing the singular vectors with an estimate of analysis error
standard deviation provided by the EDA. See program aev norm in prepdata/mc tools.

(ii) Generation of coefficients for the Gaussian sampling. See program gen sv coeff in prep-
data/mc tools.

(iii) Linear combination of singular vectors. See program sv lin combi in prepdata/mc tools.

The scaling of the width of the Gaussian distribution is performed independently for each set of singular
vectors. A standard deviation β of the Gaussian distribution to be sampled is determined as follows.
The singular vectors are compared with an estimate of the analysis error standard deviation using an
analysis error variance norm. This is defined as the L2-norm of the perturbation scaled by the estimate
of the analysis error standard deviation. For the re-forecasts, this estimate of the analysis error standard
deviation is provided by the four-dimensional variational assimilation system used in ERA-Interim. In the
real-time forecasts, scaled analysis error standard deviations obtained from the EDA (mars type=ses) are
uses as an estimate of the analysis error standard deviation. The summation in the norm extends over the
entire model grid and involves the horizontal wind components, temperature and the logarithm of surface
pressure, i.e. the variables defining the dry model state in grid point space. The standard deviation of
the Gaussian for a set of singular vectors is set to

β = γ/κ, (2.2)

where κ denotes the average analysis error variance norm for the set of singular vectors. The parameter γ
is determined empirically to yield adequate ensemble dispersion. Presently, the EPS uses γ = 0.0230 for
the extra-tropical singular vectors and γ = 0.0345 for the singular vectors targeted on tropical cyclones.
The reforecasts use γ = 0.010 and γ = 0.015, respectively, as the ERA-Interim analysis error estimate is
different from that of the real-time analysis.

The scaling factor γ for the singular vector perturbation amplitude is determined by SHELL-variables:
EPSGAMMA, EPSGAMMA TC2INI. Table 2.2 describes how γ is set for each set of singular vectors
depending on the two variables.
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The coefficients for each set of singular vectors are generated by a call to program gen sv coeff. For
each singular vector j and each odd member k random coefficients αjk are drawn from the Gaussian
distribution with mean zero and standard deviation β. The coefficients for the even members are set to
minus the coefficients of the preceding member, i.e.

αj k+1 = −αj k, for k = 1, 3, 5, . . . (2.3)

A Gaussian distribution has no compact support, i.e. the coefficients can become arbitrarily large although
this is unlikely. In order to avoid numerical instabilities, due to excessively large perturbation amplitudes
the coefficients are limited to the range [−3β, +3β].

The singular vectors are linearly combined using program sv lin combi. The linear combination is
performed in spectral space using the truncation of the singular vector computation. For each set of
singular vectors, the singular vectors and the previously generated coefficients are read. The perturbations
are written to a single file pert.grib. The perturbations are then transferred to the FDB as type=icp (initial
condition perturbation).

The final step in generating the perturbed initial conditions consists of adding the singular vector
component of the initial perturbation to the analyses that have been perturbed with the EDA-based
perturbations. The perturbations based on singular vectors are added in tasks pert ic/NN/pertinic. Here
NN refers to the EPS member number. The addition is performed with program add pert.

2.4 EDA COMPONENT OF THE INITIAL PERTURBATIONS

The EDA perturbations are based on differences between a perturbed EDA member and the EDA mean.
The perturbations are computed from 6-hour forecasts as a proxy for a sample of analysis errors because
the EDA is scheduled in the operational system to run in delayed mode in order to guarantee sufficient
computational resources for the EDA (Isaksen et al., 2010).

Presently, the EDA contains NEDA = 25 perturbed analyses. This provides 2NEDA = 50 different
perturbations x′

k

x′
k = (−1)k−1

(

x⌊(k+1)/2⌋ − x
)

with k = 1, . . . , 50 and xj , x denoting the j-th perturbed member and the mean of all perturbed members
of the EDA, respectively. The perturbation of an odd member 2j − 1 is the negative of the perturbation
of the subsequent even member 2j:

x′
2j−1 = −x′

2j

For instance, EDA member 1 is used to perturb EPS members 1 and 2 while EDA member 25 is used to
perturb EPS members 49 and 50.

Now, the tasks are described that generate the EDA perturbations. The tasks are grouped in three
families. In the first family, the high-resolution analysis that defines the centre of the EPS initial
condition distribution is retrieved at full resolution (TCo1279L137) from MARS and interpolated to
the EPS resolution (Tasks inigroup/an/getini and inidata). In the second family (inigroup/get eda),
the EDA data is retrieved from MARS and interpolated to the resolution of the EPS (TCo639L91,
Tasks get eda/NNN/getini and inidata). In addition, the mean of the EDA forecasts and the
EDA perturbations are computed in task get eda/eda mean using program comp mean pert. In the
third family (inigroup/eda pert), the EDA perturbations are added to the centre analysis. Tasks
eda pert/NNN/trans an generate the perturbed analyses xc + x′

NNN. Here xc refers to the centre-analysis.
Program add pert sums unperturbed analysis and EDA perturbations. The perturbed surface fields are
then constrained via the program adjust pertsfc to physical values and to be consistent with the HTESSEL
IFS surface parametrisation scheme (see Part IV, Chapter 7).

The generation of the perturbed analyses can proceed even if some EDA members are not available. Tasks
get eda/get/NNN/edamemberok and get eda/get/check edamemberok generate the file file eda list ok,
which contains a list with the numbers of the available EDA members. If one or more perturbed EDA
members are unavailable, NEDA is reduced accordingly.
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Chapter 3

Computational details: non-linear integra-
tions

Table of contents
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3.3.1 Control forecast family legB/fc/cf

3.3.2 Perturbed forecast family legB/fc/pf

3.1 INTRODUCTION

Since March 2016, the model resolution is TCo639L91 between forecast day 0 and 15, and TCo319L91
between forecast day 15 and 46. The TCo639 and TCo319 resolutions use time steps of 12min and 20min,
respectively. The merged VAREPS/monthly system (hereafter simply called the Ensemble Prediction
System, EPS) runs twice-a-day, at 00 and 12 UTC. On Mondays and Thursdays the 00 UTC forecasts
are extended to day 46.

The ocean model is NEMO (see Madec, 2008) version 3.4.1 in the ORCA025 configuration (1/4 degree
horizontal resolution) and 75 levels in the vertical. The LIM2 dynamic-thermodynamic sea ice component
is active and uses a viscous-plastic rheology. The model timestep of NEMO is 20 minutes, the sea ice
component is called every third timestep (once an hour). Since cycle Cy40r1 the ocean-atmosphere
coupling has been from day 0, instead of from day 10 as in the previous cycles. NEMO is coupled to IFS
every hour using a single executable framework (Mogensen et al., 2012b). The sea surface temperature
(SST), zonal and meridional surface currents and sea ice cover are coupled to the IFS. The ocean initial
conditions come from the near real-time component of the operational ocean analysis (NEMOVAR, see
Mogensen et al., 2012a) or from the Ocean ReAnalysis System 5 (ORAS5, see Zuo et al., 2017) for re-
forecasts. The atmosphere is forced by the SST from the ocean model plus an additional term which is
the difference between the high resolution SST from OSTIA and the low resolution SST from the ocean
analysis at step 0 during the first 5 days of the forecast. After day 5, this additional term is relaxed to
reach 0 by day 9. This additional term ensures that the SSTs during the first days of the forecasts still
contains the high resolution information of the OSTIA SST analysis.

This merged EPS/monthly configuration has been running in operations since 11 March 2008 (see
Buizza et al. (2007) and Vitart et al. (2008) for a description of the operational configuration, and
Buizza et al. (2003) for a description of the benefits of increasing the spatial resolution for the EPS).
The EPS horizontal resolution was last changed on 8 March 2016.

Since the introduction of the merged medium-range/monthly EPS on 11 March 2008, each of the 51 15-day
non-linear integrations have been performed in tasks grouped in families, legA and legB. This facilitates
the production of the ensemble forecast products in different batches: the first one which includes only
products up to forecast day 15, and the second one on Mondays and Thursdays which includes the
monthly products. A detailed description of the VAREPS technical implementation, including a detailed
discussion on how to retrieve forecast data across the resolution change, can be found in Buizza et al.
(2006).
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3.2 FAMILY LEGA

Family ’legA’ includes the generation of the initial perturbations (see Section 2.3) and the first 15-
day forecast integration. These forecasts are all coupled to the NEMO ocean model. Under sub-family
’legA/fc’, three types of forecasts are currently run: the ensemble control forecast, the ensemble perturbed
forecasts and the two extra calibration/validation forecasts.

3.2.1 Control forecast family legA/fc/cf

The control forecast family includes four tasks: task legA/fc/cf/getinileg copies the initial conditions in
the forecast working directory, while task legA/fc/cf/modeleps performs the day 0 to day 15 integration
at resolution TCo639 and with 91 vertical levels. The family oceanini prepares the ocean initial conditions.
Tasks modeleps tidy and sppt2fdb deal with the restart data for the ocean model and the SPPT scheme,
respectively. Control forecast data are archived in MARS (the ECMWF Meteorological Archival and
Retrieval System) as type ’cf’ of stream ’enfo’.

3.2.2 Perturbed forecast family legA/fc/pf

This family includes 50 sub-families, named legA/fc/pf/001, legA/fc/pf/002, .... Each sub-family includes
the same two tasks as the control forecast: task legA/fc/cf/getinileg copies the perturbed initial conditions
in the forecast working directory, while task legA/fc/cf/modeleps performs the day 0 to day 15 integration
at resolution TCo639 and with 91 vertical levels. Perturbed forecast data are archived in MARS as type
’pf’ of stream ’enfo’.

3.3 FAMILY LEGB

Under sub-family ’legB/fc’, the ensemble control and the perturbed forecasts are extended twice-a-week
(on Mondays and Thursdays) from forecast day 15 to 46 with a TCo319 resolution and with 91 vertical
levels. These forecasts are fully coupled to the ocean model.

Note that technically each legB forecast starts from the legA 14-day forecast: when the legB forecast
has passed forecast day-1, which coincides with the legA forecast day-15, its data are archived in MARS
as part of the ’enfo’ stream. In other words, EPS forecast data in MARS stream ’enfo’ include legA
TCo639L91 forecasts from day 0 to day 15 and legB TCo319L91 forecasts for lead times exceeding 15
days.

The accumulated fields in legB are re-initialized at day 15 from interpolated fields obtained from the
legA integration. A conserving interpolation scheme available in IFS is used. The accumulated fields that
have been interpolated to lower resolution at day 15 are archived in MARS in stream ’efov’ and as the
corresponding ’variable resolution’ parameter. For instance, total precipitation (param=128) is archived
as ’Total precipitation (variable resolution)’. It is identified as param=128.230. These variable resolution
fields at the truncation time are required to correctly compute accumulations that start at or before 15 d
and end after 15 d.

3.3.1 Control forecast family legB/fc/cf

The control forecast family includes five tasks: task legB/fc/cf/getvarepsdata retrieves all 14-day forecast
fields from legA required to start the legB forecast. Task legB/fc/cf/intHtoL interpolates the initial
conditions from the legA to the legB resolution. Task legB/fc/cf/modeleps performs the day 14 to day
46 integration at resolution TCo319 and with 91 vertical levels. Tasks modeleps tidy and sppt2fdb deal
with the restart data for the ocean model and the SPPT scheme, respectively.

3.3.2 Perturbed forecast family legB/fc/pf

This family includes 50 sub-families named legB/fc/pf/001, legB/fc/pf/002,. . . . Each sub-family handles
the integration of a perturbed forecast of the ensemble. The subfamilies include the same tasks as the
control forecast.
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Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F.
(2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system.
Q. J. R. Meteorol. Soc., 137, 553–597.

Ehrendorfer, M. and Beck, A. (2003). Singular vector-based multivariate normal sampling in ensemble
prediction. ECMWF Tech. Memo. No. 416.

Ehrendorfer, M. and Tribbia, J. J. (1997). Optimal prediction of forecast error covariances through
singular vectors. J. Atmos. Sci., 53, 286–313.

Gelaro, R., Buizza, R., Palmer, T. N. and Klinker, E. (1998). Sensitivity analysis of forecast errors and
the construction of optimal perturbations using singular vectors. J. Atmos. Sci., 55, 1012–1037.

Golub, G. H. and van Loan, C. F. (1983). Matrix Computation. North Oxford Academic Publ. Co. Ltd.

Hagedorn, R. (2008). Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF
Newsletter No. 117, pp. 8–13.

Hagedorn, R., Buizza, R., Hamill, M. T., Leutbecher, M. and Palmer, T. N. (2012). Comparing TIGGE
multi-model forecasts with re-forecast calibrated ECMWF ensemble forecasts. Q. J. R. Meteorol. Soc.,
138, 1814–1827.

Harrison, M. S., Palmer, T. N., Richardson, D. and Buizza, R. (1999). Analysis and model dependencies
in medium-range ensembles: Two transplant case studies. Q. J. R. Meteorol. Soc., 126, 2487–2515.

Hoskins, B. J., Buizza, R. and Badger, J. (2000). The nature of singular vector growth and structure.
Q. J. R. Meteorol. Soc., 126, 1565–1580.

Houtekamer, P. L., Lefaivre, L. and Derome, J. (1996a). The RPN ensemble prediction system. In Proc.
ECMWF Seminar on Predictability, Vol. II, pp. 121–146, 4–8 September 1995, Reading, UK.

Houtekamer, P. L., Lefaivre, L., Derome, J., Ritchie, H. and Mitchell, H. L. (1996b). A system simulation
approach to ensemble prediction. Mon. Wea. Rev., 124, 1225–1242.

Isaksen, L. M. B., R. Buizza, M. F., Haseler, J., Leutbecher, M. and Raynaud, L. (2010). Ensemble of
data assimilations at ECMWF. Technical Report 636, ECMWF, Reading, UK.

Lawrence, A. R., Leutbecher, M. and Palmer, T. N. (2009). The characteristics of hessian singular
vectors using an advanced data assimilation scheme. Q. J. R. Meteorol. Soc., 135, 1117–1132.

Leutbecher, M. (2005). On ensemble prediction using singular vectors started from forecasts. Mon. Wea.
Rev., 133, 3038–3046.

Leutbecher, M. (2007). On the representation of initial uncertainties with multiple sets of singular vectors
optimised for different criteria. Q. J. R. Meteorol. Soc., 133, 2045–2056.

Leutbecher, M. and Lang, S. T. K. (2013). On the reliability of ensemble variance in subspaces defined
by singular vectors. Q. J. R. Meteorol. Soc., doi:10.1002/qj.2229.

Leutbecher, M., Lock, S.-J., Ollinaho, P., Lang, S. T. K., Balsamo, G., Bechtold, P., Bonavita, M.,
Christensen, H. M., Diamantakis, M., Dutra, E., English, S., Fisher, M., Forbes, R. M., Goddard, J.,
Haiden, T., Hogan, R. J., Juricke, S., Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S., Massart,
S., Sandu, I., Smolarkiewicz, P. K., Subramanian, A., Vitart, F., Wedi, N. and Weisheimer, A. (2016).
Stochastic representations of model uncertainties at ecmwf: State of the art and future vision. Tech.
Memo. 785, ECMWF, Reading, UK.

Leutbecher, M. and Palmer, T. N. (2008). Ensemble forecasting. J. Comp. Phys., 227, 3515–3539.

22 IFS Documentation – Cy43r3



Part V: Ensemble Prediction System

Madec, G. (2008). NEMO reference manual, ocean dynamics component: NEMO OPA. Preliminary
version. Institut Pierre-Simon Laplace (IPSL), France, note du pole de modelisation 27.

Mogensen, K., Balmaseda, M. and Weaver, A. (2012a). The NEMOVAR ocean data assimilation system
as implemented in the ECMWF ocean analysis for System 4. Tech. Memo. 668, ECMWF, available at
www.ecmwf.int/publications/library/do/references/show?id=90389.

Mogensen, K., Keeley, S. and Towers, P. (2012b). Coupling of the NEMO and
IFS models in a single executable. Tech. Memo. 673, ECMWF, available at
www.ecmwf.int/publications/library/do/references/show?id=90460.

Molteni, F., Buizza, R., Palmer, T. N. and Petroliagis, T. (1996). The ECMWF Ensemble Prediction
System: methodology and validation. Q. J. R. Meteorol. Soc., 122, 73–119.

Mureau, F., Molteni, F. and Palmer, T. N. (1993). Ensemble prediction using dynamically conditioned
perturbations. Q. J. R. Meteorol. Soc., 199, 299–298.

Palmer, T. N., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts, G. J., Steinheimer, M.
and Weisheimer, A. (2009). Stochastic parameterization and model uncertainty. ECMWF Tech. Memo.
No. 598, pp. 1–42.

Palmer, T. N., Gelaro, R., Barkmeijer, J. and Buizza, R. (1998). Singular vectors, metrics and adaptive
observations. J. Atmos. Sci., 55, 633–653.

Palmer, T. N., Molteni, F., Mureau, R., Buizza, R., Chapelet, P. and Tribbia, J. (1993). Ensemble
Prediction. In Proc. of the ECMWF Seminar on Validation of Models over Europe: Vol. 1, pp. 21–66,
7–11 September 1992, Reading, UK.

Park, Y.-Y., Buizza, R. and Leutbecher, M. (2008). TIGGE: preliminary results on comparing and
combining ensembles. ECMWF Tech. Memo. No. 548.

Puri, K., Barkmeijer, J. and Palmer, T. N. (2001). Ensemble prediction of tropical cyclones using targeted
diabatic singular vectors. Q. J. R. Meteorol. Soc., 127, 709–734.

Rabier, F., Klinker, E., Courtier, P. and Hollingsworth, A. (1996). Sensitivity of forecast errors to initial
conditions. Q. J. R. Meteorol. Soc., 122, 121–150.

Sleijpen, G. L. G. and van der Vorst, H. A. (1996). A Jacobi–Davidson iteration method for linear
eigenvalue problems. SIAM J. Matrix Anal. Appl., 17, 401–425.

Toth, Z. and Kalnay, E. (1993). Ensemble forecasting at NMC: the generation of initial perturbations.
Bull. Am. Meteorol. Soc., 74, 2317–2330.

Toth, Z. and Kalnay, E. (1997). Ensemble forecasting at NCEP and the breeding method. Mon. Wea.
Rev., 125, 3297–3319.

Trevisan, A., Pancotti, F. and Molteni, F. (2001). Ensemble prediction in a model with flow regimes.
Q. J. R. Meteorol. Soc., 127, 343–358.

Vitart, F. (2004). Monthly forecasting at ecmwf. Mon. Wea. Rev., 132, 2671–2779.

Vitart, F., Buizza, R., Balmaseda, M. A., Balsamo, G., Bidlot, J., Bonet, A., Fuentes, M., Hofstadler,
A., Molteni, F. and Palmer, T. N. (2008). The new VAREPS-monthly forecasting system: a first step
towards seamless prediction. Q. J. R. Meteorol. Soc., 134, 1789–1799.

Zsoter, E., Buizza, R. and Richardson, D. (2009). Jumpiness of the ecmwf and uk met office eps control
and ensemble-mean forecasts. Mon. Wea. Rev., 137, 3823–3836.

Zuo, H., Balmaseda, M. A., Boisseson, E. and Hirahara, S. (2017). A new ensemble generation scheme
for ocean analysis. Tech. Memo. 795, ECMWF.

IFS Documentation – Cy43r3 23


	V Ensemble Prediction System
	Chapter 1 Methodology
	1.1 Introduction
	1.2 Initial condition perturbations
	1.3 Singular vectors
	1.3.1 Formulation of the singular vector computation
	1.3.2 Use of the total energy norm
	1.3.3 Use of the Hessian of the 3D-Var objective function

	Appendix A. Eigenvalue algorithms
	A.1 The Lanczos algorithm
	A.2 The Jacobi--Davidson algorithm
	A.3 Solution method


	Chapter 2 Computational details: initial perturbations
	2.1 Introduction
	2.2 Singular vectors
	2.2.1 The singular vector code
	2.2.2 Computation of singular vectors

	2.3 Initial perturbation component based on singular vectors
	2.4 EDA component of the initial perturbations

	Chapter 3 Computational details: non-linear integrations
	3.1 Introduction
	3.2 Family legA
	3.2.1 Control forecast family legA/fc/cf
	3.2.2 Perturbed forecast family legA/fc/pf

	3.3 Family legB
	3.3.1 Control forecast family legB/fc/cf
	3.3.2 Perturbed forecast family legB/fc/pf


	References


