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25 years of ensemble forecasting at ECMWF
Roberto Buizza, David Richardson

Twenty-five years ago ECMWF was one of the first forecasting centres which started to issue operational 
ensemble forecasts. The availability of such forecasts marked a paradigm shift in weather prediction: 
for the first time, forecasters and users were provided with reliable and accurate estimates of the range 
of possible future scenarios, and not just with a single realisation of the future. Today ensembles are 
used not only in forecast mode, to provide forecasts for the short- and medium-range, the monthly and 
the seasonal timescale, but also in analysis mode, to provide estimates of the initial state of the Earth 
system. These ensemble-based forecasts and analyses provide more complete information than single, 
deterministic forecasts, for example through indices of the risk of severe events; probabilities of the 
occurrence of weather events; the range of possible values at specific locations; alternative weather 
scenarios; and weekly-mean anomalies.

ECMWF ensembles have been developed, implemented and maintained thanks to the work of very many 
people at ECMWF and in its Member States, and of visitors who, over the years, have spent time working 
with us to understand their performance and to improve them further. This started well before 1992, 
with trials that helped us to identify the strategy to be followed, and it is continuing today, thanks to the 
interactions with scientists within global projects such as the World Meteorological Organization’s TIGGE 
and S2S (sub-seasonal to seasonal prediction) projects. As we explain in this article, ensemble forecast 
performance is strongly linked to the quality of the model and the assimilation system used to generate 
the initial conditions; the assimilation of an increasing number of observations; the strategy that we have 
followed to simulate initial and model uncertainties; and the ensemble forecast configuration. Neither the 
performance of ensemble forecasts nor the range of ensemble-based products that we currently offer 
would be what they are today without those many contributions.

This article presents some examples of ensemble-based forecasts and explains their added value; it 
briefly reviews how we got where we are today, starting from ECMWF’s first ensemble forecasts in 1992; 
it discusses the key characteristics of an ensemble system and the design of the ensembles operational 
today at ECMWF; it charts the evolution of ensemble forecast quality; and it describes the development 
of ensemble-based products to meet different user requirements. Finally, it looks to the future to highlight 
areas where further improvements can be made.

Example forecasts 
Figures 1 to 5 give an impression of the breadth of information that ensemble-based products can 
provide. 

The Extreme-Forecast-Index (EFI) forecast issued on 27 July 2017 (Figure 1) identified southeastern 
Europe as an area that could be affected by anomalous precipitation and wind anomalies. In terms of 
precipitation, products such as the probabilistic forecast of rainfall in excess of 5 mm/day confirm this 
(Figure 2). The forecast identifies northwest Turkey as a region that could be affected by rainfall events.  
A forecaster interested in more local weather, say for Istanbul, could then click on the EFI map and 
generate a 15-day ENS meteogram for this city (Figure 3). This product shows the whole range of 
possible values that surface variables such as cloud cover, precipitation, wind and temperature can 
reach, and it contrasts them with average, climatological values. Figure 3 shows that, indeed, Istanbul 
is expected to experience anomalous precipitation on 28 and 29 July. It also indicates that the two-
metre maximum temperature for 28 July will be very low, close to the climatological minimum for this 
time of the year. 

The meteogram for Istanbul also indicates that, after day four, the city will experience anomalous winds. 
To understand the synoptic-scale pattern associated with this event, we can look at the clusters for the 
500 hPa geopotential height over Europe (Figure 4). They indicate that there is very little uncertainty over 
southeastern Europe (the three clusters have a very similar circulation in that region), with a low-pressure 
anomaly. Indeed, the small difference between the weather scenarios over Turkey for 31 July (Figure 
4, right-hand column) is also reflected in the small spread in the wind forecast for Istanbul for that day 
(Figure 3, second diagram from the bottom). 
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Figure 2 ENS-based probability of 24-hour precipitation in excess of 5 mm, issued on 27 July 2017 at 00 UTC and 
valid for 29 July. 
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Figure 1 ENS-based Extreme Forecast Index (EFI) forecast issued on 27 July 2017 at 00 UTC and valid for 29 July. 
The map shows areas where the ensemble forecast distribution differs substantially from the model climatological 
distribution for three variables: 2-metre temperature, 10-metre wind gusts and precipitation. The black contours show 
the ensemble-mean forecast for mean sea level pressure. For example, the EFI map shows that southeastern Europe is 
predicted to experience extreme wind gusts and precipitation. 
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Figure 3 15-day ENS meteogram for Istanbul, issued on 27 July 2017 at 00 UTC, showing (a) daily mean total cloud 
cover, (b) total daily precipitation, (c) model climate 10-metre wind direction distribution, (d) daily 10-metre wind 
direction distribution, (e) daily mean 10-metre wind speed, and (f) 2-metre minimum and maximum temperature. For 
each variable, the plot shows the ensemble distribution (box-and-whiskers in most cases) and the model climate so 
that users can assess the range of possible future weather scenarios and how this compares with the model climate. 
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Figure 4 ENS-based 500 hPa geopotential height forecast clusters starting from 27 July 00 UTC for the European 
region, valid for (a) t+72 hours, (b) t+84 hours, and (c) t+96 hours. Cluster 1 (top row) includes 31 of the 51 ENS 
members, cluster 2 (middle row) 11 members and cluster 3 (bottom row) 9 members. Each panel shows the 500 
hPa geopotential height (black contours) predicted by a representative member (RM) of the cluster and the anomaly 
(shading, computed with respect to the model climate). Each day, up to a maximum of five clusters are generated 
by an algorithm that defines in an objective way how many clusters are needed to represent the ensemble forecast 
distribution and identifies the RMs. The frame colour of each plot represents different climatological regimes. The green 
colour shown here stands for a negative North Atlantic Oscillation (NAO).

Ensembles also provide very valuable information for longer time ranges. An example is given in Figure 5, 
which shows a series of monthly ensemble-mean forecasts of the weekly-average two-metre temperature 
anomaly over Europe, predicted for the week of 19 to 26 of June 2016. The plots show that the ensemble 
was able to predict the heat wave that affected Europe up to four weeks ahead. 

1992: the start of a paradigm shift
From the early days of numerical weather prediction (NWP), it was clear that there are some cases when 
forecast errors remain small even for long forecast ranges, and others when even a 1-day forecast is 
wrong. This operational experience was supported by scientific studies that pointed out that, due to the 
chaotic nature of the atmosphere, even small initial errors can grow very rapidly and affect forecast quality 
at a very short range. 

In the seventies and the eighties, we started investigating whether we could determine in advance, say 
when a forecast is issued, whether the future weather was easier or more difficult to predict than on 
average. In other words, we were looking for an objective method that could provide us with a level of 
forecast confidence. At that time different approaches were tested at the major NWP centres. It quickly 
became clear that the only feasible way to address this problem was to use ensembles. The main idea 
behind an ensemble approach is very simple: generate N forecasts, each of them designed to take into 
account possible uncertainties, and use the N forecasts to estimate the range of possible outcomes, and/
or the most probable set of values, and/or the probability that temperature (or other variables) will be 
higher or lower than a certain value.
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In the 1980s, different techniques were tried to develop reliable and accurate ensembles. These two 
adjectives, ‘reliable’ and ‘accurate’, are key, since they define whether an ensemble is capable of 
providing valuable information. An ensemble is reliable when there is, on average over many cases (say a 
season), a good correspondence between a forecast probability and the probability of occurrence. More 
precisely, in a reliable ensemble, if an event is predicted with an 80% probability, it occurs 80% of the 
time when such a prediction is made. An ensemble is accurate when the average error of the ensemble 
mean is small. In a reliable ensemble, the average spread is equal to the average error of the ensemble 
mean. An ensemble is sharp when the spread of the ensemble members is small (so event probabilities 
tend towards 0 or 100%). A good ensemble forecast is as sharp as possible while still being reliable. 

In the 1980s in the US initial tests used lagged ensembles, which mixed forecasts started at different 
times and on different days, e.g. the nine forecasts issued every six hours over the past two days. 
ECMWF tried to generate ensembles starting all at the same time, but with initial conditions perturbed 
in a random way. Results indicated that the US method delivered forecasts with a reasonable quality 
for the medium forecast range, beyond about a week, but not for the shorter forecast range, since the 
‘oldest’ forecasts were too old to be accurate. The ECMWF methods did not deliver good results since 
the random perturbations did not lead to very different forecasts: the forecasts remained too similar to 
provide valuable information on possible future scenarios.

The beginning of the 1990s saw the development and testing of more promising methods both at ECMWF 
and at the US National Centers for Environmental Predictions (NCEP). 1992 saw the implementation of 
the first two operational ensemble systems in those two places. In 1995 the Meteorological Service of 
Canada (MSC) followed suit and others a few years later, both at the global scale and for specific regions. 

These implementations generated a paradigm shift in operational NWP from a deterministic approach, 
based on a single forecast, to a probabilistic one, in which ensembles are used to estimate the probability 
density function of initial and forecast states. Products such as the ones shown in Figures 1–5 would not 
exist if it was not for the development and operational implementation of these ensembles.
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Figure 5 Analysis and ENS-based monthly forecasts for weekly-average anomalies of 2-metre temperature between 
19 and 26 June 2016, showing (a) the observed anomaly, defined by the average of ECMWF analyses over that period, 
and showing the forecasts starting on (b) 19 June, (c) 15 June, (d) 12 June, (e) 8 June, (f) 5 June, (g) 1 June, (h) 29 May 
and (i) 25 May. Each forecast panel shows the ensemble-mean 2-metre anomaly.
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Added value of ensemble forecasts
Today it is widely accepted that forecasts have to include uncertainty estimations, confidence indicators 
that allow forecasters to estimate how ‘predictable’ the future is. Short- and medium-range forecasts, 
monthly and seasonal forecasts, and even decadal forecasts and climate projections are today based 
on ensembles, so that the uncertainty associated with the forecast can be estimated. Furthermore, 
ensembles are widely used to provide an estimate of the initial state uncertainty, to estimate the analysis 
error more accurately.

Ensemble-based, probabilistic forecasts are more valuable than single forecasts. This is mainly due to the 
fact that they provide probabilities for different events to occur. In other words, ensembles provide users 
with more complete information about future weather scenarios. One way to measure such a difference 
is to apply simple cost–loss models using a measure called the Potential Economic Value (PEV) of a 
forecasting system (Richardson 2000). Another reason why ensemble-based, probabilistic forecasts are 
more valuable than single forecasts is that they provide more consistent (i.e. less changeable) successive 
forecasts. For example, consecutive ensemble-mean forecasts issued 24-hour apart and valid at the 
same time are generally found to jump less than corresponding single forecasts such as the high-
resolution forecast or the ensemble control forecast (the ensemble member that starts from the ‘most 
likely’ initial state, defined by the unperturbed analysis). By using the whole ensemble, the unpredictable 
features are averaged out, and the predictable features (the signals) can be extracted. 

Design of medium-range global ensembles 
Ensembles are designed to simulate the sources of forecast errors linked to initial condition and model 
uncertainties. Model uncertainties arise because the models that we use to generate weather forecasts 
are imperfect, simulate only certain physical processes on a finite mesh, and do not resolve all the scales 
and phenomena that occur in the real world. Initial condition uncertainties arise because observations are 
affected by observation errors and do not cover the whole globe with a uniform density and frequency. 
Furthermore, the process of estimating the initial state of the system, from which a forecast is computed, 
is based on some statistical assumptions and approximations. 

In the first version of the ECMWF global ensemble (Molteni et al., 1996), initial uncertainties were 
simulated using singular vectors (SVs), which are the perturbations with the fastest growth over a finite 
time interval (Buizza & Palmer, 1995). SVs provided a very good basis to define the initial perturbations of 
the ECMWF ensemble: compared to the random initial perturbations tried in the 1980s, they led to a very 
good growth rate in the spread of the ensemble, similar to the forecast error growth rate. SVs remained 
the only type of initial perturbations used in the ECMWF ensemble until 2008, when the Ensemble of 
Data Assimilations (EDA) started being used, together with singular vectors (Buizza et al., 2008). EDA-
based perturbations were added to improve the simulation of initial errors linked to the characteristics 
of the observing system (observation errors, coverage, scalability...). Today SVs remain an essential 
component of the ECMWF ensemble, and they keep providing dynamically relevant information about 
initial uncertainties that could have a strong, negative impact on forecast errors.

There are different ways to simulate initial and model uncertainties. For example, in the first version 
of NCEP’s global ensemble, bred vectors (BVs) were used to simulate initial uncertainties instead of 
SVs. The BV cycle aims to emulate the data assimilation cycle. It is based on the notion that analyses 
generated by data assimilation will accumulate errors that have a tendency to grow by virtue of 
perturbation dynamics (Toth & Kalnay, 1997). On the one hand, errors that have a tendency to stay 
constant or to decay will be reduced when detected by an assimilation scheme in the early part of the 
assimilation window. What remains of them will decay by the end of the assimilation window due to 
the dynamics of such perturbations. On the other hand, even if errors that have a tendency to grow 
are reduced by the assimilation system, what remains of them will have amplified by the end of the 
assimilation window. 

In 1995 the ECMWF and the NCEP ensembles were followed by the Canadian ensemble. The Canadians 
adopted a Monte Carlo approach, designed to simulate both initial uncertainties due to observation errors 
and data assimilation assumptions, and model uncertainties (Houtekamer et al., 1996). The Canadian 
ensemble was the first to include a simulation of model uncertainties. It tried to include as many sources 
of error as possible.
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Following the Canadian example, a stochastic scheme designed to simulate model uncertainties was 
introduced in the ECMWF ensemble in 1999 (Buizza et al., 1999). Since then, many other operational 
ensembles have also included such schemes to simulate model uncertainties. Buizza (2014) provides a 
review of the main characteristics of the operational global ensembles available in the TIGGE database.

At present, as detailed by Palmer et al. (2009), four main approaches are followed in ensemble prediction 
to represent model uncertainties: 

• A multi-model approach, where different models are used to construct ensembles; models can differ 
entirely or only in some components (e.g. in the convection scheme);

• A perturbed parameter approach, where all ensemble integrations are performed with the same model 
but with different parameters defining the settings of the model components; one example is the 
Canadian ensemble (Houtekamer et al., 1996);

• A perturbed-tendency approach, where stochastic schemes designed to simulate the random model 
error component are used to simulate the fact that tendencies are known only approximately: one 
example is the ECMWF Stochastically Perturbed Parametrization Tendency scheme (SPPT) (Buizza et 
al., 1999);

• A stochastic back-scatter approach, where a Stochastic Kinetic Energy Backscatter scheme (SKEB) 
is used to simulate processes that the model cannot resolve, e.g. the upscale energy transfer from the 
scales below the model resolution to the resolved scales; an example is the SKEB scheme currently 
used in the ECMWF ensemble, which is due to be switched off in 2018 since, in its current formulation, 
it does not deliver any significant benefits.

Ensemble configurations
Two key aspects that define the characteristics of an ensemble are the methodology used to simulate 
initial uncertainties and the approach adopted to simulate model approximations. A third key 
characteristic of an ensemble is its resolution, both horizontal and vertical. A fourth aspect is the forecast 
length, and the fifth key aspect of an ensemble configuration is the number of ensemble members. 

Theoretical work done in the 1970s and 1980s suggested that one needs at least about 10 members for 
a good ensemble-mean forecast, i.e. one which has enough members to average out the unpredictable 
scales or features. But are 10 members enough to get a good probability distribution forecast, and 
not just a good ensemble-mean? Results obtained in the 1990s and 2000s based on the comparison 
of ensemble sizes of up to a few hundred indicated that reliability and accuracy are very sensitive 
to ensemble size. On synoptic scales (scales of a few hundred kilometers), increasing the ensemble 
size from say 10 to about 50 was found to have a clear and detectable impact on ensemble forecast 
performance. Further increases beyond 50 have a smaller effect, on average, but can still have a 
detectable impact if one wants to predict rare events. When ensembles are used to estimate the analysis 
uncertainties, increasing the ensemble size to a few hundred members was found to bring clear benefits. 
Today most operational ensemble forecasts have between 20 and 50 members, while ensembles of 
analyses have up to about 300 members (although this number can be substantially lower depending on 
the computational cost of the analysis method). 

Resolution, forecast length and the number of ensemble members are key cost drivers of ensemble 
production. Given that we need to generate forecasts in a reasonable amount of time if we want 
them to be valuable (say about 1 hour), and that we have a finite amount of computing resources, 
compromises have to be made when an ensemble configuration is defined. Ideally, we would like to use 
as many members as possible and the highest resolution possible to be able to simulate also the finest 
scales so that we can provide detailed forecasts, including of severe weather. We would also like to 
extend the forecast length as much as possible to provide a bigger set of users with ensemble-based, 
probabilistic forecasts.
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The compromise struck in ECMWF’s Integrated Forecasting System (IFS) is to use a number of different 
configurations for the ocean, the Ensemble of Data Assimilations, boundary condition generation, 
medium-range and monthly ensemble forecasts (ENS), and seasonal forecasts (see Table 1 for details).

Forecast length
Resolution

Number of  
members

Re-forecasts
(number of members; 

number of years)Horizontal Vertical 
(number of layers)

ORAS5 (Ocean reanalysis 
System-5) -- 100 km 75 layers 5 (once a day)  –

EDA (Ensemble of Data 
Assimilations) -- 18 km

137 
(to 0.01 hPa)

25 
(00, 12 UTC) 

–

ENS for boundary-
condition generation 6.5 days 18 km

91 
(to 0.01 hPa)

51 
(06, 18 UTC)

–

ENS for the medium 
range 15 days 18 km

91 
(to 0.01 hPa)

51 
(00, 12 UTC)

Yes 
(22/week; 20 years)

ENS for the monthly 
range 46 days 36 km

91 
(to 0.01 hPa)

51 
(00 UTC on Mon 

and Thu)

Yes 
(22/week; 20 years)

SEAS4 (seasonal-range 
ensemble)

7 and 13  
months

80 km
91 

(to 0.01 hPa)

51 
(1st of each 

month)

Yes 
(15/month; 30 years)

Table 1 Key characteristics of the ECMWF ensembles. All ensembles simulate initial and model uncertainties.

Figure 6 illustrates how the three ECMWF ensembles and the high-resolution analysis and forecast are 
linked together:

• The 25-member EDA and the high-resolution analysis (both using 4D-Var) are used to generate the 
initial conditions of the two coupled forecast ensembles, ENS and SEAS4;

• The 5-member ORAS5 (Ocean Reanalysis and Analysis, version S5) is used to initialise the dynamic 
ocean and sea-ice components of the two coupled ensembles, ENS and SEAS4;

• The high-resolution analysis is used to generate the initial conditions of the single, high-resolution 
forecast (HRES).

Figure 6 Diagram showing the links between the three ECMWF ensembles (EDA, ENS and SEAS4) and Earth system 
components used to generate the initial conditions and the forecasts.
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Figure 6 also illustrates the Earth-system components included in the initial condition and forecast 
models:

• The EDA, the high-resolution analysis and the HRES use the ECMWF land and atmosphere model and 
the ECMWF wave model (ECWAM);

• The ocean analysis ORAS5 uses the NEMO (Nucleus of European Modelling of the Ocean) ocean 
model (see https://www.nemo-ocean.eu/) and the LIM2 (Louvain-la-Neuve) sea-ice model (see http://
www.elic.ucl.ac.be/repomodx/lim/);

• The two coupled ensembles ENS and SEAS4 use all model components: IFS+ECWAM+NEMO+LIM2.

The high-resolution forecast is due to be coupled with the ocean and sea-ice models (NEMO+LIM2) from 
the beginning of 2018, after the implementation of IFS Cycle 45r1.

Ensembles for sub-seasonal and seasonal timescales
Since the beginning of the 2000s, ensembles have also been used to generate monthly and seasonal 
forecasts. These extended-range ensembles are global and have a coarser resolution than the medium-
range ensembles to limit production costs (see Table 1). Since extracting predictable signals for the 
extended range is very difficult, these ensembles have been complemented by re-forecast suites, which 
are smaller-size ensembles with the same configuration as the operational ensembles (apart from their 
size) generated for the last few decades. After the medium-range and the monthly ensembles were joined 
in 2008, with the implementation of the VAREPS approach, we have been able to exploit the re-forecasts 
to design new and better products for the medium range too.

Today the re-forecasts are used to estimate the ensemble characteristics (reliability and accuracy, and 
model biases), and they help to generate forecast products across the whole forecast range, for example 
products such as the EFI (shown in Figure 1), the 15-day meteograms (Figure 3) and some of the 
extended-range probabilistic forecasts (e.g. the ones shown in Figure 5) by providing a model climatology. 

ECMWF is upgrading the seasonal ensemble to SEAS5, which will have the same resolution as the ENS 
monthly extension. SEAS5 is due to become operational in November 2017.

Ensembles of analyses and reanalyses
Since its inception in 1995, the Canadian ensemble has included an ensemble of analyses, generated 
using an ensemble Kalman filter (EnKF). The initial conditions of each of the ensemble members are 
defined by one of the members of the EnKF. The EnKF has been providing the Meteorological Service of 
Canada with information about uncertainties in the analysis. 

At ECMWF and Météo-France, we started producing an Ensemble of Data Assimilations in 2008. We run 
an ensemble of N separate data assimilation procedures, each using perturbed observations and a model 
uncertainty scheme. Observations are perturbed to simulate the fact that observations are not perfect due 
to observation errors, and to take into account observation representativeness errors. Model uncertainties 
are simulated to take into account the fact that the models used to define the analysis are not perfect. 

Since 2008, the ECMWF EDA has been used in combination with SVs to define the initial conditions of 
the medium-range/monthly ensemble (Buizza et al., 2008). The addition of EDA-based perturbations has 
had a major impact on ensemble reliability and accuracy in the short forecast range over the extratropics, 
and for the whole forecast range over the tropics. 

Since 2002, ECMWF has been producing a five-member ensemble of ocean analyses and reanalyses to 
initialise the ocean component of coupled ensembles. The medium-range/monthly ENS started using the 
ocean ensemble in 2008 from day 10, when it was merged with the monthly ensemble (see Box A). Since 
2013, ENS has been using the ocean ensemble ORAS5 from initial time.

https://www.nemo-ocean.eu/
http://www.elic.ucl.ac.be/repomodx/lim/
http://www.elic.ucl.ac.be/repomodx/lim/
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ENS configuration changes 

This list includes the main changes made to the 
medium-range/monthly ensemble (ENS) since its  
first day of real-time production and dissemination  
on 19 December 1992:

• Dec 1992: the ensemble starts running three days 
a week (Fri-Sat-Sun, at 00 UTC); initial uncertainties 
are simulated using only the initial-time SVs with 
a T21L19 resolution, computed with a 36-hour 
optimisation time interval, over the whole globe; 
only the initial-time SVs are used, and the initial 
perturbations are symmetric; the forecast resolution 
is T63L19 (~320 km); forecasts are run up to 10 
days; ENS includes 33 members; there is no 
simulation of model uncertainties, no coupling to an 
ocean/sea-ice model, and no re-forecast suite;

• Feb 1993: to address the fact that SVs were 
concentrating mainly in the southern hemisphere 
(SH), the Local Projector Operator (LPO) was 
introduced, to allow SVs to be located in the 
northern hemisphere (NH); this had a major impact 
on ensemble reliability over the NH;

• Aug 1994: to improve the ensemble spread, 
the optimisation time interval (OTI) of the SV 
computation was increased from 36 to 48 hours; 
this improved the perturbation growth also beyond 
the OTI; from 1 May 1994, ENS forecasts were 
generated every day, once a day, at 00 UTC;

• Mar 1995: the horizontal resolution of the SVs was 
increased to T42; this improved perturbation growth 
and thus ensemble reliability;

• Mar 1996: a second set of SVs was introduced, 
targeted to grow over the SH; this had a major 
impact on ensemble reliability over the SH;

• Dec 1996: the resolution of ENS was increased to 
TL159L31 (~120 km), and the number of members 
was increased from 33 to 51;

• Mar 1998: a second set of SVs, called evolved SVs, 
that grow during the two days before the initial date, 
were added to the initial-time SVs; the evolved SVs 
simulated the effect of errors growing during the 
data-assimilation period; their addition improved 
ensemble reliability (spread) especially in the short 
range;

• Oct 1998: the stochastic model error scheme (SPPT) 
was introduced to simulate the effect of model 
uncertainties linked to physical parameterization; this 
had a large impact on ensemble reliability (spread) 
over the whole forecast range, and especially over 
the tropical region;

• Oct 1999: vertical resolution was increased from  
31 to 40 levels;

• Nov 2000: ENS horizontal resolution was increased 
from TL159 to TL255 (~80 km);

• Jan 2002: SVs targeted to grow over the tropical 
region, in areas where tropical depressions were 
identified, were added; they led to improved spread 
over the tropical region, and especially in cases of 
tropical storms;

• Sep 2004: the sampling strategy applied during the 
generation of ENS initial perturbations was changed 
to Gaussian sampling;

• Jun 2005: the Gaussian sampling method was 
revised;

• Feb 2006: ENS horizontal resolution was increased 
from TL255L40 to TL399L62 (~60 km);

• Sep 2006: ENS was extended to 15 days, with the 
use of variable resolution (VAREPS), whereby the 
forecast resolution was truncated at day 10 from 
TL399 to TL255;

• Mar 2008: the medium-range ensemble (ENS) and 
the monthly ensemble were merged, using the 
VAREPS technique; ENS was run to 32 days once 
a week (Mon at 00 UTC); ENS was then coupled to 
the dynamical ocean model HOPE from forecast 
day 10; the ENS re-forecast suite with a 5-member 
ensemble run once a week for the past 18 years was 
introduced;

• Sep 2009: the stochastic model error scheme was 
revised;

• Jan 2010: the horizontal resolution was increased 
from TL319 to TL639 (~35 km) in the first 10 days, 
and from TL255 to TL319 (~70 km) from day 10 to 
day 32;

• Jun 2010: a new set of initial perturbations, 
generated using the 10-member Ensemble of Data 
Assimilations (EDA), was introduced in ENS; the 
EDA-based perturbations improved the simulation 
of the perturbations linked to the data-assimilation 
cycle, and replaced the evolved SVs; this led to 
improvements in ensemble reliability (spread), 
especially in the short forecast range and over the 
tropical region;

• Nov 2010: a second scheme, the stochastic back-
scatter (SB) scheme, was introduced to simulate 
model error;

• Nov 2011: a new ocean model was introduced: 
NEMO with a 1-degree resolution (~100 km) 
replaced HOPE; the ENS extension to 32 days 
started being run twice a week (Mon and Thu at 00 
UTC);

• Jun 2012: the EDA-based perturbations were 
revised to include perturbations in the surface fields, 
and the re-forecast suite was enlarged to cover the 
past 20 years;

• Nov 2013: the vertical resolution was increased 
from 62 to 91 vertical levels, and the coupling to 
the ocean model was moved from day 10 to day 0; 
this led to major improvements in the prediction of 
phenomena over the tropics, such as the Madden–
Julian Oscillation (MJO);

• May 2015: forecast length was extended from 32 to 
46 days, and the re-forecast suite was enlarged to 
include two 11-member ensembles run every week 
(on Mon and Thu), covering the past 20 years;

• Mar 2016: the horizontal resolution was increased 
to TCo639L91 (cubic-octahedral grid; ~18 km) up to 
day 15, and to TCo319L91 (~36 km) from day 15 to 
day 46;

• Nov 2016: the ocean model resolution was 
increased from 1 degree to 0.25 degrees (~25 km), 
and the number of vertical layers from 42 to 75; the 
interactive sea-ice model LIM2 was introduced.

A
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Changes in configuration over 25 years
Since its inception in 1992, the medium-range ensemble has changed configuration several times.  
A chronology of the main configuration changes is provided in Box A. It is interesting to compare the  
ENS configuration implemented in operations in December 1992 with that of 2016.

In terms of the key cost drivers of ensemble production, the main changes are:

• the horizontal resolution has increased by a factor of 20, from about 320 km to about 16 km;

• the vertical resolution has increased by a factor of almost 5, from 19 to 91 vertical levels;

• the forecast length has been extended from 10 to 46 days;

• the number of ensemble members has increased from 33 to 51;

• the frequency of ENS forecast production has increased: in 1992 we produced 99 ensemble forecasts 
each week (3x33), while today we produce 1428 ensemble forecasts each week up to 6.5 days 
(4x51x7); of these 1428 forecasts, 714 are extended up to 15 days (2x51x7); of these 714 forecasts, 
102 are extended up to 46 days (2x51);

• today we also produce ensemble re-forecasts: every week, we generate 440 ensemble forecasts up to 
46 days (2x11x20).

Evolution of ensemble forecast quality
Thanks to model upgrades, improvements in the data assimilation system, the use of more observations, 
and the ENS configuration changes discussed above, the ENS performance has increased substantially 
during the past 25 years. 

Figure 7 shows the time evolution of the skill of ENS forecasts for 500 hPa geopotential height over 
the northern hemisphere from 1 January 1995 to today. Skill is measured by the Continuous Ranked 
Probability Skill Score (CRPSS), which compares the Continuous Ranked Probability Score (CRPS) of 
ensemble forecasts with that of a reference forecast, such as climatology. CRPS measures how close 
ensemble distributions are to observed values. The CRPS for a deterministic forecast is equal to the mean 
absolute error. CRPSS has a value of 1 for a perfect forecast, and is zero for a forecast that has the same 
skill as a statistical forecast based on climatology. Figure 7 shows that for 500 hPa geopotential height, 
a variable that describes the large scales in the free atmosphere, ENS forecasts have improved by about 
1.5 days per decade. For example, today’s 5-day forecasts (green line) are as skilful as 3-day forecasts 
(red line) were in 2001. This represents a predictability gain of about 2 days over a 16-year period. 
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Figure 7 Time evolution, from 1 January 1995 to today, of the Continuous Ranked Probability Skill Score (CRPSS) 
of ENS forecasts of 500 hPa geopotential height over the northern hemisphere, for lead times of 24 hours, 72 hours, 
120 hours, 168 hours and 240 hours. Forecasts are verified against operational analyses. The more or less regular 
pattern of peaks and troughs in each line stems from differences in predictability related to the seasons: winter 
weather tends to be more predictable than summer weather.
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If we look closer to the surface, results are even more striking. For precipitation, for example, Figure 8 
shows that between 2002 and 2017 the lead time when the CRPSS dropped below 0.1 increased from 
about forecast day 3 to about forecast day 7, equating to a predictability gain of about 4 days over a 
15-year period. Similar improvements are found for other variables and other regions (e.g. Europe, not 
shown). 
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Figure 8 Time evolution of the forecast lead time when the CRPSS for the prediction of 24-hour accumulated 
precipitation drops below 0.1. Forecasts are verified against observations at SYNOP network weather stations in the 
extratropics. 

Looking at longer forecast lead times, it is worth remembering that in 2006 the medium-range ensemble 
was extended to 15 days, and that in 2008 ENS was joined to the monthly ensemble and extended to 
32 days. In 2015 it was further extended to 46 days. These extensions were justified by the fact that 
forecasts for these extended lead times had been improving as well. Clearly, for these forecast ranges 
only spatially large scales and time-averaged fields can be predicted with a certain level of skill. Results 
documented in Buizza & Leutbecher (2015) and Vitart et al. (2014) show that for these large-scale, low-
frequency phenomena the forecast skill horizon has been extended to several weeks. The reader is also 
referred to Vitart et al. (2014) for a comprehensive overview of how the skill of ECMWF monthly forecasts 
evolved during the preceding 15 years.

Product development
Key to the successful use of ensemble forecasts is the ability to extract and communicate the information 
that is relevant to each user’s decision-making process. 

Alongside the development of the ENS perturbation methodologies, there has been substantial work and 
progress in the development of ensemble-based forecast products to address a range of different user 
requirements and enable forecasters to extract the appropriate information from the ENS. 

When the ensemble was first introduced, the number of ENS-based products was limited. ‘Stamp’ maps 
showed each ENS member at forecast day 7, allowing the user to quickly assess by eye the range of 
possible weather states. This was complemented by cluster products that objectively grouped the set 
of ENS members into a small number of different scenarios that showed the different forecast evolution 
for 5 to 7 days ahead over Europe. For a small set of pre-defined locations, ‘plume diagrams’ showed 
the evolution of a small number of surface parameters through the forecast range. These products were 
issued to users by fax.

Nowadays users have access to a wide range of ENS data and products that process and present the 
ensemble information in different ways according to the needs of the user. The focus at ECMWF is 
to provide generic products that will be useful to assist operational weather forecasters. Many users 
complement the ECMWF products by doing their own post-processing to generate specific products 
tailored to their individual needs.
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Extreme Forecast Index
The Extreme Forecast Index (EFI) was specifically designed to alert forecasters to occasions of potentially 
extreme weather (Lalaurette, 2003; Zsoter, 2006). The EFI compares the current ensemble forecast to 
the model climate distribution (generated by running a large set of re-forecasts over the last 20 years). It 
highlights areas where the current ENS forecasts are showing an enhanced likelihood of unusual weather. 
A large EFI indicates that the weather is likely to be extreme in the context of what can occur locally.

The EFI is one of the most popular ensemble products with forecasters. It can be especially useful in 
forecasting around the world, when forecasters may not have detailed knowledge of the regional climate. 
Since the EFI focuses on anomalies relative to the local climate, it is especially relevant for impact-based 
forecasting, where local extremes (or return periods) are more relevant than fixed event thresholds. 

Storm tracks
Also relevant for severe weather forecasting are specific sets of products for extra-tropical and tropical 
cyclones. In both cases the cyclones are tracked in each ENS member and a range of products show 
the evolution of certain features along the forecast track, such as central pressure and maximum wind 
associated with the system. See the separate article on the hurricanes Harvey and Irma in this Newsletter 
for examples.

Both sets of products are designed to show information about the tracks and intensities of storms in the 
forecast and to help the forecasters quickly answer questions such as where and when severe storms will 
occur; how intense they will be; and where there may be a risk of a severe tropical cyclone in the coming 
days or weeks.

Many ENS products are available on the ECMWF website and many are now interactive, allowing the user 
to for example click on a location of high EFI to examine the details of the full ENS distribution at that 
location. ecCharts is an interactive web application that enables users to explore the ECMWF forecasts in 
even more detail. It allows them to zoom in on any area of interest; to select and overlay different forecast 
parameters; to compare and combine HRES and ENS forecasts; to compute probabilities for specific 
events of their own choosing (for example by selecting a precipitation threshold and time interval); and 
even to define combined events (such as the probability of both heavy precipitation and extreme wind).

There are several other products not mentioned here which highlight different aspects of the ensemble 
distribution, for use by forecasters in different situations. Each is designed to extract the most relevant 
information from the ensemble and to present it to the forecaster as clearly as possible, so the forecaster 
can focus on their job without having to spend time themselves trying to process the huge amount of 
information in the ensemble.

A look to the future 
Looking to the future, three trends can be detected in the way ensembles are being upgraded:

i. A move towards an Earth-system approach to modelling and assimilation;

ii. A move towards a seamless approach in the design of the analysis, medium-range, sub-seasonal and 
seasonal ensembles;

iii. A move towards higher resolution.

The first trend is justified by results obtained in the past two decades that have shown that by adding 
relevant processes we can further improve the quality of the existing forecasts, and we can further extend 
the forecast skill horizon at which dynamical forecasts lose their value.

The second trend is partly motivated by scientific developments and partly by technical requirements. 
From a scientific point of view, there is evidence that processes that were thought to be relevant for the 
extended range are also relevant for the short range. An example is the introduction of a dynamic ocean 
in ECMWF ensembles. We started using a coupled ocean–land–atmosphere model for the seasonal 
and monthly timescales. We also introduced it in the medium-range ensemble once we realised that it 
could help to improve its reliability and accuracy. From a technical point of view, having an integrated 
approach whereby the same model is used in analysis and prediction mode, from day 0 to year 1, 
simplifies maintenance and the implementation of upgrades. Furthermore, it facilitates the diagnostics 
and evaluation of a model version, since tests carried out over different timescales can help to identify 
undesirable behaviour that could lead to forecast errors. 
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The third trend stems from the need to better resolve the smaller scales and their interaction with 
slightly less small scales, and so on. All scales from the microphysics within individual clouds to large-
scale weather systems covering thousands of kilometres are relevant in weather prediction, and errors 
propagate from the smallest to the larger scales. If we consider the current operational ensemble, we 
should not forget that even if it uses a grid spacing of 18 km in the first 15 days, it can actually resolve 
in a realistic way only scales that are about 5 to 6 times the grid spacing. This is because the scales 
closest to the model grid spacing are not simulated in an accurate way. Thus, today the ECMWF global 
ensembles (EDA and ENS) have an effective resolution of about 100 km. Even the highest-resolution 
limited-area ensembles, such as the ones in operation at Météo-France and the UK Met Office, have a 
resolution of about 2 km, which corresponds to an effective resolution of about 10 km. 

ECMWF’s ten-year Strategy adopted in 2016 sets ambitious goals in line with these requirements. These 
include the introduction of a 5 km global ensemble by 2025. Even this will, however, not be the end of the 
road. If we want to be able to predict weather events such as intense wind storms or heavy precipitation 
at the scales at which they occur, it will be essential for model resolution to be increased to a few hundred 
metres for limited-area models and, in the long term, possibly to even finer resolutions than 5 km globally. 

In conclusion … ensembles are the way forward!
The past 25 years have seen major advances in ensemble prediction, both in the way ensembles are 
generated and in ensemble products. Forecasts have become more accurate and reliable thanks 
to improvements in the initial conditions (i.e. in the use of observations and in the data assimilation 
system used to generate them); in the quality of forecast models; and in ensemble configurations. The 
introduction of additional relevant Earth system processes, such as the coupling to dynamic ocean and 
sea-ice models, has also led to improvements, and it has helped us to ‘tame’ the butterfly effect (Buizza 
et al., 2015). The use of re-forecasts has made it possible to extract more meaningful signals from the 
raw forecast data.

We are confident that the future will see the use of ensembles also in areas where they are not yet used. 
Ensemble reliability and accuracy will continue to improve as a result of further advances in models, data 
assimilation methods, and the schemes used to simulate the initial and model uncertainties. Resolution 
will be increased to better simulate small-scale processes that are not currently resolved and to capture 
their important interactions with larger-scale processes. Ensembles of analyses and forecasts will be linked 
closer together to improve their performance. Physical processes that are not yet included in the models 
but that are relevant for weather prediction will be included, to make the forecasts more and more realistic. 

The time is right: ensembles are the way forward!



R. Buizza, D. Richardson  25 years of ensemble forecasting at ECMWF

16 doi:10.21957/bv418o

Further reading
Barkmeijer, J., R. Buizza, E. Källén, F. Molteni, R. Mureau, T. Palmer, S. Tibaldi & J. Tribbia, 2013: 
20 years of ensemble prediction at ECMWF. ECMWF Newsletter No. 134, 16–32.

Buizza, R. & T.N. Palmer, 1995: The singular-vector structure of the atmospheric general circulation.  
J. Atmos. Sci., 52, 9, 1434–1456.

Buizza, R., M. Miller & T.N. Palmer, 1999: Stochastic representation of model uncertainties in the 
ECMWF Ensemble Prediction System. Q.J.R. Meteorol. Soc., 125, 2887–2908.

Buizza, R., M. Leutbecher & L. Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF 
Ensemble Prediction System. Q.J.R. Meteorol. Soc., 134, 2051–2066.

Buizza, R., 2014: The TIGGE medium-range, global ensembles. ECMWF Technical Memorandum  
No. 739.

Buizza, R., & M. Leutbecher, 2015: The Forecast Skill Horizon. Q.J.R. Meteorol. Soc., 141, Issue 693, 
Part B, 3366–3382.

Buizza, R., M. Leutbecher & A. Thorpe, 2015: Living with the butterfly effect: a seamless view of 
predictability. ECMWF Newsletter No. 145, 18–23.

Houtekamer, P.L., L. Lefraive & J. Derome, 1996: A system simulation approach to ensemble 
prediction. Mon. Wea. Rev., 124, 1225–1242.

Lalaurette, F. 2003. Early detection of abnormal weather conditions using a probabilistic extreme 
forecast index. Q. J. R. Meteorol. Soc., 129, 3037–3057.

Molteni, F., R. Buizza, T.N. Palmer & T. Petroliagis, 1996: The new ECMWF ensemble prediction 
system: methodology and validation. Q.J.R. Meteorol. Soc., 122, 73–119.

Palmer, T.N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G.J. Shutts, M. Steinheimer 
& A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Technical 
Memorandum No. 598.

Richardson, D.S., 2000: Skill and economic value of the ECMWF Ensemble Prediction System. Q.J.R. 
Meteorol. Soc., 126, 649–668.

Toth, Z. & E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 
125, 3297–3319.

Vitart, F., G. Balsamo, R. Buizza, L. Ferranti, S. Keeley, L. Magnusson, F. Molteni & A. 
Weisheimer, 2014: Sub-seasonal predictions. ECMWF Technical Memorandum No. 738.

Zsótér, E. 2006: Recent developments in extreme weather forecasting. ECMWF Newsletter No. 107, 
8–17.

© Copyright 2017

European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, England

The content of this Newsletter is available for use under a Creative Commons Attribution-Non-Commercial- 
No-Derivatives-4.0-Unported Licence. See the terms at https://creativecommons.org/licenses/by-nc-nd/4.0/.

The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability 
for error or omission or for loss or damage arising from its use.


