

Land surface data assimilation using SMAP, SMOS, and AMSR observations

Rolf Reichle

With contributions from:

Wade Crow, Gabrielle De Lannoy, Bart Forman, Lucas Jones, John Kimball, Jana Kolassa, Randy Koster, Hans Lievens, Qing Liu, Yuan Xue, and many others.

Motivation

Low-frequency passive microwaves are sensitive to the terrestrial water cycle (soil moisture, snow)

- 1. Motivation and Introduction
 - SMAP Level-4 Soil Moisture Algorithm
- 2. Soil Moisture
 - Assimilation of AMSR-E, SMOS, and SMAP
 - Model Diagnosis & Calibration, Flood Forecasting, Carbon Fluxes
- 3. Snow Data Assimilation
 - AMSR-E
- 4. Summary

Limitations of low-frequency PMW observations

- 1. Sensitive only to <u>surface</u> soil moisture (~0-5 cm).
- 2. Available only in swaths.
- 3. Coarse resolution (~40 km).
- 4. Subject to errors.
- \rightarrow Need data assimilation for many applications.

Example: SMAP Level-4 Soil Moisture (L4_SM) algorithm.

SMAP L4_SM modeling system

Model estimates are also subject to errors (in model structure, parameters, and forcing).

SMAP L4_SM soil moisture assimilation algorithm

SMAP L4_SM soil moisture analysis

GMAO

GMAO

GMAO

- 1. Motivation and Introduction
 - SMAP Level-4 Soil Moisture Algorithm
- 2. Soil Moisture
 - Assimilation of AMSR-E, SMOS, and SMAP
 - Model Diagnosis & Calibration, Flood Forecasting, Carbon Fluxes
- 3. Snow Data Assimilation
 - AMSR-E
- 4. Summary

Assimilate passive and/or active microwave soil moisture retrievals?

Best results with joint assimilation of passive (AMSR-E) *and* active (ASCAT) retrievals.

GMAC

Assimilate brightness temperature and/or backscatter?

DA-Sentinel-1: Based on water cloud model and 1d. Has more spatial detail.DA-SMAP: As in L4_SM. Inter-/extrapolates over unobserved grid cells.DA-SMAP+Sentinel-1: Combines advantages of both.

Assimilate brightness temperature and/or backscatter?

GMAO

Assimilate brightness temperature and/or backscatter?

Increased *spatial* correlation vs. in situ soil moisture.

Assimilate brightness temperature or soil moisture retrievals?

• Assimilate SMOS Tbs (7 angles), Tbs fitted to 40°, or soil moisture retrievals

Similar skill vs. in situ measurements...

... but very different increments (i.e., information extraction).

Can we improve root-zone soil moisture?

L4_SM root-zone estimates improved over model-only data (NRv4.1).

# Ref	. Pixels
SFSM 9 km	26
SFSM 36 km	17
RZSM 9 km	9
RZSM 36 km	7

How do we address model bias?

Step 1: Calibrate microwave radiative transfer model to match long-term mean and std-dev of SMOS Tbs.Step 2: Rescale assimilated Tbs to match seasonally varying climatology of SMOS (or SMAP) Tbs.

Put differently: Assimilate anomalies. Requires knowledge of Tb climatology.

How do we address model bias?

SMAP L4_SM v3 - rescaling with SMOS & SMAP

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

GMA

Reichle et al. (2017), JHM, doi:10.1175/JHM-D-17-0130.1.

How do we address model bias?

SMAP L4_SM analysis mostly unbiased.

Do we need to address model bias?

Constructed SMAP Neural Network (NN) retrievals in the global climatology of the Catchment model.

Experiments:

OL:Model-only simulation (no assimilation)DA-NN:Assimilate NN retrievals without further bias correctionDA-NN-CDF:Assimilate NN retrievals with local bias correction

Difference (OL minus DA) in mean soil moisture.

Do we need to address model bias?

Similar results for root-zone soil moisture.

Kolassa et al. (2017), *Rem. Sens.*, doi:10.3390/rs9111179.

Do we need to address model bias?

Difference (OL minus DA) in <u>mean</u> (top) evaporation and (bottom) runoff.

What is the quality of the uncertainty estimates?

Average: O-F: 6 K O-A: 4 K

cf. Tb obs error = 4 K

includes

instrument error = 1.3 K & representativeness error = 3.8 K

GMAO Globa

Global Modeling and Assimilation Office gmao.gsfc.nasa.gov Reichle et al. (2017), JHM, doi:10.1175/JHM-D-17-0130.1.

What is the quality of the uncertainty estimates?

How efficiently do we use the observations?

O-F time series at Little Washita, Oklahoma.

O-F auto-correlation measures "efficiency" of assimilation system.

How efficiently do we use the observations?

- 1. Motivation and Introduction
 - SMAP Level-4 Soil Moisture Algorithm
- 2. Soil Moisture
 - Assimilation of AMSR-E, SMOS, and SMAP
 - Model Diagnosis & Calibration, Flood Forecasting, Carbon Fluxes
- 3. Snow Data Assimilation
 - AMSR-E
- 4. Summary

How about model calibration vs. data assimilation?

GMAO

Can PMW observations improve flood forecasting?

<u>Assimilation</u> of <u>L-band</u> data improves pre-storm soil moisture representation for flood forecasting.

National Aeronautics and Space Administration

Can PMW observations be used to diagnose model processes (runoff)?

SMAP L4 soil moisture estimates reveal possible bias in the runoff response of land surface models.

Can PMW observations constrain carbon fluxes?

Carbon flux sensitivity to s.m.

SMAP Level-4 carbon product

- 1. Motivation and Introduction
 - SMAP Level-4 Soil Moisture Algorithm
- 2. Soil Moisture
 - Assimilation of AMSR-E, SMOS, and SMAP
 - Model Diagnosis & Calibration, Flood Forecasting, Carbon Fluxes
- 3. Snow Data Assimilation
 - AMSR-E
- 4. Summary

Can PMW observations be used for snow assimilation?

Can PMW observations be used for snow assimilation?

Mixed result...

Summary

- Low-frequency passive microwaves (PMWs) are sensitive to the terrestrial water cycle.
- Soil moisture
 - PMW observations useful for model diagnosis, calibration, and data assimilation.
 - PMW observations have potential to improve flood forecasts and carbon flux estimates.
 - <u>L-band</u> works better than C-band or X-band.
 - <u>Assimilation</u> provides estimates:
 - of dependent variables (incl. root-zone soil moisture)
 - with complete spatio-temporal coverage
 - at finer resolution.
 - Assimilate PMW observations together with active (radar) data.
 - Assimilate radiances and backscatter (rather than retrievals).
 - Model bias correction is still needed.
 - Uncertainty estimates are still rather imperfect.
- Snow assimilation showed mixed results.

