MetPy: Community-driven Meteorological Analysis Tools in Python

Ryan May and John Leeman
UCAR/Unidata
28 November 2017
What is MetPy?

• Started in 2008
• Set of tools for meteorological analysis in Python
• Goal is to replace legacy tools, like GEMPAK (GEneral Meteorology PAcKage), for scripted analysis
• Provide building blocks for applications and scripts
Design Philosophy

• Fit well with scientific Python ecosystem (NumPy, SciPy, Matplotlib, CartoPy, etc.)
• Unit-correctness built-in (using pint)
• Simple to use with your own data
• Good online documentation, with citations to literature when appropriate
Features

- Functionality breaks into three main areas:
 - Plotting (using matplotlib)
 - Skew-T, Station Plot
 - Reading data files
 - GINI, NEXRAD data and products
 - Calculations
 - Gridding, thermodynamics, etc...
- No compiled code in MetPy itself
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(plt, 115, 100)
skew = SkewT(plt, rotation=45)

Plot the data using normal plotting functions, in this case using
log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
skew.ax.set_xlim(1000, 100)
skew.ax.set_ylim(-40, 60)

Calculate LCL height and plot as black dot
lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')

Calculate full parcel profile and add to plot as black line
prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
skew.plot(p, prof, 'k', linewidth=2)

Shade areas of CAPE and CIN
skew.shade_cin(p, T, prof)
skew.shade_cape(p, T, prof)

An example of a slanted line at constant T -- in this case the 0
isotherm
skew.ax.axvline(0, color='c', linestyle='--', linewidth=2)

Add the relevant special lines
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()

Show the plot
plt.show()
Skew-T
Station Plot
New Features in 0.6

- Many new calculations
 - Isentropic interpolation
 - Severe weather indices
 - Sigma
 - Frontogenesis and deformation
- Weather symbol table
- Version-ed and devel docs
- 4 external contributors
Miller Composite

Composite Analysis Valid: 2011-04-27 18:00:00

- 300-hPa jet Core Winds (kt)
- 500-hPa jet Core Winds (kt)
- 850-hPa jet Core Winds (kt)
- 12-hr Surface Pressure Falls (hPa)
- 12-hr 500-hPa Height Falls (m)
- Best Lifted Index (C)
- Cyclonic Absolute Vorticity Advection
- 700 hPa Dewpoint Depression > 15°C
- Surface Td > 65°F
- Surface MSLP < 1010 hPa
Upcoming 0.7

• End of December
• Calculations
 • Specific humidity
 • Thickness
• Internal gradient function for irregularly-spaced grids
• More bug fixes
• AMS short course
3-year Plan

- NSF Award to replace GEMPAK
- Standard data model using xarray and pandas
 - Simplifies use of library
 - Make some calculations easier
 - Need to make xarray play with pint
- Parity with GEMPAK’s calculation collection
• Automated field calculation
 • Large collection of calculations
 • Hard to search
 • Complex calculations require too many steps
• Combine data model with graph-based solver to automatically calculate parameters from source data
3-Year Plan (cont.)

• Declarative plotting interface
 • Way too much boilerplate to make a script
 • Leverage data model to streamline plotting
 • Exploit traitlets and create GEMPAK-like declarative plotting
#!/bin/csh -f
source /Users/gempak/GEMPAK6.3.0/Gemenviren
set CURDAY = `date --u +%Y%m%d`
set FRUN = 12
set FTIME = 'f012'
set GDFILE = /models/gfs/${CURDAY}-${FRUN}_gfs003.gem

set PROJ = 'str/90;-100;0'
set DEV = 'gif|us.gif|1024;768'

gdcntr <<EOF1
 GDFILE = $GDFILE
 GDATTIM = $FTIME
 GLEVEL = 700
 GVCORD = pres
 CTYPE = f
 GFUNC = avor(wnd)
 CONUR = 2
 CINT = 2
 LINE = 1/1
 FINT = 10;12;14;16;18;20;22;24
 FLINE = 101;21;22;23;5;19;17;16;15;5
 TITLE = 31/~2/GFS ~
 CLEAR = n
 GAREA = us
 PROJ = $PROJ
 DEVICE = $DEV
r

EOF1
Current Prototype

goes_cat = TDSCatalog('http://thredds-test.unidata.ucar.edu/thredds/catalog/satellite/goes16/'
 'GOES16/20170419/CONUS/Channel14/catalog.xml')
satdata = xr.open_dataset(goes_cat.datasets[-1].access_urls['OPENDAP'])

gfs_cat = TDSCatalog('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/GFS/Global_0p5deg/catalog.xml')
gfs_data = xr.open_dataset(gfs_cat.latest.access_urls['OPENDAP'])

m = Map()
m.garea = 'us'
m.proj = 'data'
m.figsize = (18, 6)

ps = ImagePlot()
ps.ctable = 'viridis'
ps.data = satdata
ps.gfunc = 'Sectorized_CMI'

cntr = ContourPlot()
cntr.data = gfs_data
cntr.gfunc = 'Geopotential_height_isobaric'
cntr.glevel = 50000
cur_time = datetime.utcnow()
cntr.data_time = cur_time.replace(hour=(cur_time.hour // 6) * 6,
 minute=0, second=0, microsecond=0)

m.plots = [ps, cntr]
m.draw();
Community Driven

- BSD 3-clause license
- Continually soliciting participation
 - 23 contributors to repository
- Open development model
 - Everything goes through pull requests
 - Ideas and bugs become GitHub issues
 - Discussions on Gitter (chat)
 - GitHub milestones used for roadmap
- Contributor License Agreement
- Release early and often
Automate Everything

- Infrastructure in place to assure sustainability
- TravisCI and AppVeyor
 - 97% test coverage
 - Code style and lint checking
 - Examples all executed
 - Automated documentation deployment to GitHub Pages
- Automated PyPI deployment
- Web-based static analysis
Resources

• GitHub
 • https://github.com/Unidata/MetPy

• Documentation
 • https://unidata.github.io/MetPy

• Twitter
 • https://twitter.com/MetPy

• Conda
 • conda install -c conda-forge metpy