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A generic ensemble generation scheme for data assimilation and ocean analysis

Abstract

A new generic perturbation scheme suitable for generation of an ensemble of ocean analysis is pre-
sented. The scheme consists of two distinct elements: perturbations to the assimilated observations,
both profiles and surface observations, and perturbations to the surface forcing fields. The new
scheme has been applied to the new Ocean ReAnalysis System-5 (ORAS5). The surface forcing per-
turbation has also been used to create oceanic surface forcing for ERA5, and in operational Ensemble
Data Assimilation (EDA) from cycle 43R1.

The idea behind the observation perturbation scheme is to account for observation representativeness
error. Instead of perturbing the value of the assimilated observations, the scheme perturbs the position
of the observations. This is done by applying perturbations to the geographical location of the in-
situ temperature and salinity profiles, and by random thinning, both in the horizontal for surface
observations, and in the vertical for dense profiles. This method exploits the full observation data
set and uses more observations (through ensemble approach) than the previous thinning method.
The impact of the perturbation scheme in the ocean reanalysis is illustrated together with selected
sensitivity experiments. It is shown that the observation perturbations have little impact in global
or basin wide climate indices, but they have local effect. The ensemble spread shows large errors
in regions with strong mesoscale eddy activities and in areas affected by the Mediterranean Outflow
waters. These are regions where departures with respect to observations are also large. It is also
shown that ensemble spread in the tropical upper-ocean is under-dispersive with only five ensemble
members, but it improves by increasing the ensemble size.

The estimation of the diagonal elements of BackGround Error (BGE) covariances using the ensemble
spread generated by observation perturbation has been compared with the specified BGE values and
also with those diagnosed using Desroziers’ method. Results show stronger agreement in spatial pat-
terns and values between the ensemble and Desroziers’ estimates than with the specified BGE values.
However, it is discussed that the ensemble estimation is very sensitive to the way the ensemble is cre-
ated, and will need to be corrected in regions where observations are scarce. A robust combination
of parameterized and ensemble-derived BGE covariances is recommended for future developments.

A revised scheme for generating perturbations to surface forcing has also been developed. It is a
generalization of the previous scheme and is still based on sampling past differences between differ-
ent sources of information. The previous scheme, implemented as part of the seasonal forecasting
system 2 (S2), created monthly perturbations for wind stress and Sea Surface Temperature (SST),
based on sampled differences between atmospheric re-analysis products. The new scheme is more
general in several aspects: i ) it allows for representation of both analysis and structural uncertainty;
ii) it permits different temporal de-correlation scales of the perturbations; iii) it encompasses a wider
range of variables and iv) it preserves the multivariate relationships among the perturbed variables.
The reference data sets for sampling the perturbations have also been updated. The analysis uncer-
tainty is sampled using the ensemble information from ERA-20C. The structural uncertainty in SST
is sampled using more up-to-date data sets of high resolution ESA-CCI and HadISSTv2.1. Sea Ice
Concentration (SIC) structural uncertainty is sampled using differences between HadISSTv2.0 and
v2.1. The scheme is not fully flow dependent yet as it represents only the seasonal variations of
uncertainty. However, it has been designed to be compatible with the flow dependent perturbations
such as those produced by the real-time EDA; in particular, the climatological analysis uncertainty
perturbations can be replaced by those from the EDA when the latter becomes available. The new
SST and sea-ice perturbation strategy developed is also used by ERA5 and by the operational EDA
(albeit with different parameter choices). A version control number (v3) will allow further updates
in the future.
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1 Introduction

The Ocean ReAnalysis System (ORAS in what follows) at ECMWF was from the beginning conceived
as an integral part of the seasonal forecasting system, providing the ocean initial conditions that are re-
quired for skilful forecasts at seasonal time scales, in particular, for ENSO. A good estimation of the
ocean initial condition should be accompanied by the corresponding uncertainty estimation of the ocean
state. This is why an ensemble of five ocean reanalyses was created as part of the initialization procedure
for the Seasonal Forecasting System S2 and S3 (Anderson et al. [2007]). The ensemble was generated
by applying perturbations to the wind stress and to the SST. Vialard et al. [2005] describe the perturba-
tion method and quantify the impact of these perturbations on seasonal forecasts of ENSO. The same
technique was later employed in subsequent ocean reanalysis systems (ORAS3 and ORAS4, see Bal-
maseda et al. [2008, 2013]), and it was used in European projects such as DEMETER and ENSEMBLES
[Weisheimer et al., 2007]. The technique was extended to include precipitation perturbations in Daget
et al. [2009], who tried to use the the ensemble information in a prototype of EDA with the NEMOVAR
ocean data assimilation system, in an attempt to assess the impact of introducing flow dependency in
the NEMOVAR background error covariance matrix. The forcing perturbation code and the data base
needed updating. We took the opportunity to generalize the perturbation scheme. The new scheme ex-
ploits the information from new data sets, such as ERA-20C [Poli et al., 2016] and ESA-CCI [Merchant
et al., 2014], it allows different temporal decorrelation scales (for instance monthly, 5-days pentad), it is
extended to more surface fluxes variables, such as solar radiation, precipitation and sea-ice, and, when
possible, it preserves multivariate relationships. The same scheme is used to generate the SST and sea-ice
perturbations in ERA-5 and in the EDA since Cycle 43r1 [Hirahara et al., 2016].

Daget et al. [2009] also implemented a scheme to perturb the values of the assimilated observations ac-
cording to the specifications of the observation error covariance matrix R, which is a common practice
in ensemble methods [Shlyaeva et al., 2016]. However, the values of R are usually specified for conve-
nience and practical reasons, rather than to reflect to the perceived observation errors. For instance, for
practical reasons, R is usually diagonal and the diagonal variances are inflated as a way to mitigate the
fact that the Representativeness Errors (REs) are correlated in space. In the case of the ocean, perturbing
the observation values independently according to the values of R can lead to the assimilation of very
unrealistic observation profiles, which are not hydro-statically stable. This is why here we try another
approach in the observation perturbations, which aims at accounting only for REs and correlations in the
observation errors. This is done by perturbing positions of the whole profiles within the scales that the
model resolution permits to resolve (RE), and by applying random thinning algorithms where different
ensemble members use different observations within a certain spatial criteria (correlation in observa-
tion error). The latter has the potential of exploiting the new high resolution observational data sets in
ensemble-based data assimilation methods.

This memorandum is organized as follows. Section 2 gives a description of the observation perturbations
applied to both in-situ (Section 2.2) and surface observations (Section 2.3). Evaluation of the perturbation
methods is presented in Section 3, while ensemble estimates were assessed against the diagonal elements
of BGE covariances and the independent observation data sets through a series of sensitivity experiments.
Perturbation of surface forcing is described in Section 4. This surface perturbation scheme also allows for
different temporal de-correlation scales (Section 4.2) and accounts for multivariate relationships among
the perturbed variables (Section 4.3). A summary and conclusions are given in Section 5.
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2 Observation perturbations

2.1 Representativeness errors and observation perturbations

The ECMWF’s Ocean Data Assimilation system (ODA) uses a variational data assimilation scheme de-
veloped in collaboration with CERFACS, the UK Met Office and INRIA for the NEMO ocean model
(NEMOVAR, see Weaver et al. [2005]). NEMOVAR is applied as an incremental three-dimensional
variational assimilation (3D-VAR) using FGAT (the First-Guess at Appropriate Time) approach. Details
about NEMOVAR data assimilation scheme in its 3D-VAR FGAT configuration can be found in Mo-
gensen et al. [2012]. The increments δw can be obtained by approximately minimizing the quadratic
cost function

J[δw] =
1
2

δwT B−1
δw+

1
2
(Gδw−δyo)T R−1(Gδw−δyo) (1)

where δyo is innovation and can be written as

δyo = yo−G(wb) (2)

Here wb is the background state, G is the generalized non-linear observation operator that maps the
control vector into the space of the observation vector. G is an approximation of the Tangent-Linear (TL)
of G. It includes a linearized balance operator (K), which accounts for the multivariate relationship, and
a linearized model propagator (M), which propagates state vector to the observation time. B is a block
diagonal univariate background error covariance matrix and R is a diagonal observation error covariance
matrix. Here we will compare the specified diagonal elements of B (σ s

b) with diagnosed value (σd
b ) using

Desroziers’ method [Desroziers et al., 2005], and with estimation given by the ensemble spread (σ e
b ), as

described below.

Correct estimations of both B and R are critical for optimal ocean data assimilation. BGE covari-
ances comprise errors from initialization and boundary conditions as well as model errors. On the other
hand, observation errors as quantified by R should include both instrument measurement errors and REs
[Lorenc, 1986]. The later are introduced with degrading physical observations to model resolution and
are associated with finite distance and time between two observations as well as finite resolution of the
model fields. Estimation of REs of ocean observations, e.g. altimetry sea level, has been carried by Oke
et al. [2008] with result suggesting that the values of REs are typically greater than or at least comparable
to measurement errors, particularly in regions of strong mesoscale variability. Janssen et al. [2007] also
proposed a method for estimation of the ocean observation errors using triple independent data sets.

Ideally, REs are resolution dependent and depend on the level of eddy activity in different regions
[Schiller et al., 2008]. In practice, REs are normally assumed to be horizontally uniform and only depth
dependent for temperature and salinity observations [Brasseur et al., 2005] with a non-uniform inflation
to R at coastlines [Mogensen et al., 2012]. In the ECMWF ODA as well as in ORAS4 [Balmaseda
et al., 2013], superobbing/thinning schemes have been used for averaging the observations toward the
scales resolved by the model, as methods to reduce problems with representativeness. Here, for the
development of the ORAS5 system, the same strategy of specifying total observation errors in R has
been adapted from ORAS4. In addition, the superobbing/thinning schemes were exploited to include a
perturbation scheme, and an ensemble approach has been adopted in order to account for the REs of both
surface and sub-surface ocean observations. The ensemble spread in the background field introduced by
observation perturbations can be used for estimation of the diagonal elements of B. This is the first step
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towards a flow-dependent estimation of BGE covariance matrix B. Implementation of this observation
perturbation scheme is described in the following sections, which are organized by observation types that
are assimilated in the ECMWF ODA system.

2.2 Perturbation of in-situ observations

An updated ocean in-situ observation data set from the Met Office Hadley Centre EN series (EN4,
see Good et al. [2013]) has been assimilated in ORAS5. The EN4 data set includes temperature and
salinity profiles obtained from Argo, Expendable BathyThermograph (XBT), Mechanical BathyTher-
mograph (MBT), Conductivity-Temperature-Depth (CTD) instruments, moored buoys and other sources
(i.e. seals), with depth correction [Gouretski and Reseghetti, 2010] applied to XBT and MBT data from
1975 onwards. All observation errors are assumed to be uncorrelated so only observation error standard
deviations need to be specified. An empirical analytical function (see Mogensen et al. [2012]) is used
for specification of total observation error standard deviations for both temperature and salinity. In addi-
tion, horizontal and vertical REs from temperature and salinity observations were taken into account in
ORAS5 through an observation perturbation scheme that perturbs locations of in-situ observations and
by applying a stratified vertical thinning in vertical profiles.

2.2.1 Perturbation of horizontal positions of in-situ observation

The location of observation matters when computing the innovation using observation and model-equivalent
background field derived using observation operator. In practice not all ocean observations are point mea-
surement, i.e., instrument location can drift during taking measurement. Take Argo float for example,
it takes about 6 hours in ascending when taking measurement, before reaching surface to send report
to satellite. As a result the recorded surface location includes an error spans from a few kilometres to
approximately 20 km in regions with strong boundary currents. Assuming that profile observations in
each single realization of perturbed member represent only a small scale which is not resolved by ocean
model, the ensemble approach by perturbing profile’s geographical location then spreads the same obser-
vation information into region with a representative value that can be measured in the model resolution,
assuming that the perturbation distance and size of ensemble are large enough.

To do that, a random perturbation is added to the recorded geographic location of any given profile
from the EN4 data set in order to account for its RE. It is equivalent to shifting the observation profile
horizontally within a pre-defined distance (Perturbation Distance, PD thereafter). As the first attempt, the
Probability Density Function (PDF) of RE is assumed to be unbiased with uniform distribution. Different
perturbing strategies have been tested, including

• P1: perturb a profile with random distance (0 to PD) and random angle (0-360 degree)

• P2: perturb a profile with constant distance (as PD) and random angle (0-360 degree)

• P3: perturb latitude of a profile with random distance (0 to PD)

• P4: perturb longitude of a profile with random distance (0 to PD)

• P5: perturb both latitude and longitude of a profile with the same random distance (0 to PD)

As a results, for perturbing strategy P1 the density function of perturbed profile location is uniformly
distributed within an area defined by a circle of radius equals to PD. The implementation ensures that each
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observation type can be perturbed independently, with different PD values. We chose to illustrate this
profile horizontal location perturbation scheme in Fig. 1 with a large PD value (200 km) and ensemble
size (200 members). The locations of in-situ observation profiles from EN4 for a given day (20130101)
are shown in Fig. 1-(a) and (b) for un-perturbed and perturbed conditions, respectively. Readers, however,
should note that types of perturbed observations and corresponding PD values as seen in Fig. 1 are chosen
for illustration purpose only. Horizontal perturbation of in-situ observations in ORAS5 was not carried
out in this configuration.

2.2.2 Perturbation of vertical positions of in-situ observation

A vertical thinning scheme is used in both ORAS4 [Balmaseda et al., 2013] and ORAP5 [Zuo et al.,
2015b] for all in-situ observations, as a pragmatic way to reduce the impact of spatial observation error
correlations. It is especially important for observation types with high vertical resolution (i.e. CTDs) as
spatial correlation is unaccounted when specifying observation error covariance. In recent in-situ data
sets such as EN4 (used for ORAS5), the vertical resolution of the profiles has increased considerably
to 400 levels, compared to the 150 levels in the EN3 data set, which was assimilated in ORAS4. REs,
however, are not parametrised in ORAS4, even though they are likely to be the main contribution to
observation errors considering the low model resolution. In order to account for observation REs due
to the finite vertical resolution of the model, a new vertical perturbation scheme has been implemented
in ORAS5. It is based on the same thinning scheme as in ORAS4 together with a stratified sampling
method that employs pre-defined depth ranges as sampling groups.

Te vertical perturbation scheme is characterised by a thinning factor N, which indicates the maximum
number of observations that can be assimilated within each model level. In practice, a set of thinning lev-
els is constructed using all model levels and N−1 additional levels that are equally distributed between
each model level pair. In ORAS4 new thinned observation profiles are constructed using observations
that are nearest in depth to this set of new thinning levels. In ORAS5 an additional step has been added to
construct thinning layer spanning a depth range with each thinning level in the middle of the correspond-
ing layer. These thinning layers are used as sampling groups to carry out stratified random sampling
for in-situ observations. A schematic illustration of this new perturbation scheme can be seen in Fig. 2.
Among all observations within a thinning layer only one is selected randomly. This allows to maintain
the vertical structure of a given profile with no more than N observations within each model layer. The
scheme guarantees that T/S observations are always selected from the same level. It also guarantees
that the same observation number is used by each ensemble member. Compared with the vertical thin-
ning strategy used in ORAS4, this method exploits the full vertical resolution of input observations and
utilizes more observations through assimilating different observation sub-samples in different ensemble
members.

2.3 Perturbation of surface observations

2.3.1 Perturbation of Sea Ice observations

A prognostic thermodynamic-dynamic sea-ice model (LIM2, see Fichefet and Maqueda [1997]) and
assimilation of SIC data were first introduced in the ORAP5 system [Zuo et al., 2015a]. Assimilation
of SIC is treated as univariate meaning cross-correlations between SIC and other ocean state variables
are not taken into account. Before assimilation in NEMOVAR, a thinning algorithm was applied to the
gridded SIC data in order to reduce the spatial correlations of observation errors, which are not explicitly
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Figure 1: Geographic locations of (top) daily EN4 profiles in 20130101 and (bottom) perturbed EN4
profiles for the same day but with 200 ensemble members. For illustration purpose, only XBT and
Moorings profiles are perturbed with a large PD value (200 km) and using perturbing strategy P2 and
P5, respectively. Here colour are used to denote different observation types.

8 Technical Memorandum No. 795
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Figure 2: Example of the stratified sampling method used for vertical perturbation of in-situ observations,
as demonstrated with a CTD profile from EN4 data set and thinning factor N = 3 with 5 ensemble
members. The first ensemble member (opa0) is always un-perturbed and the same thinning method as
used in ORAS4 is applied. Within each thinning layer only one observation, if exists, is selected using
simple random sampling method for the remaining ensemble members (opa1-4).

accounted for in our ODA system, and to reduce the data density to a level commensurate with the
resolution of the ORA system. This thinning of SIC data in ORAP5 was carried out using systematic
sampling method with a fixed sampling interval (~0.5°) in both latitudinal and longitudinal directions.
Here we go one step further and introduce a stratified random sampling method within this thinning
scheme as a strategy for ensemble generation. It is implemented in ORAS5 as a generic perturbation
scheme that can be applied to any type of gridded surface observation. Like in the vertical perturbation
of in-situ temperature and salinity profiles, it is designed to account for the REs of surface observations
arising due to finite NEMO model resolution. For simplicity, the PDF of observation REs is assumed to
be unbiased with a uniform distribution.

First, a thinning box with reduced grid is constructed with its sides defined by a thinning length scale

Technical Memorandum No. 795 9
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(LX , where X=SIC, or any other surface control variable). For gridded sea ice concentration data

Lsic = fsic ∗Lo (3)

where Lo is the length scale of the model grid; fsic is a thinning factor for SIC, which is represented
as a number of observation. For SIC data assimilation in ORCA1 configuration with fsic = 2, Lsic is
approximately 100 km in the Arctic Ocean. For any thinning box, we define

Pt(i, j) =
M(i, j)

f 2
sic

(4)

where Pt(i, j) is the sampling probability threshold; M(i, j) is the number of observation samples con-
tained in the thinning box (i,j), and f 2

sic is the squared thinning factor for SIC. In most cases M(i, j) = f 2
sic,

except when near boundaries of the gridded observation array (e.g. box(i, j-1) in Fig. 3). A random prob-
ability value (Ps(i, j)) between 0-1 is generated for each thinning box. A random sampling method is
then performed in the thinning box (i,j) only when Ps(i, j)≤ Pt(i, j), and at most nsic of observations will
be selected randomly for data assimilation from this thinning box. In the end we construct a logical 2D
array (S(i, j)) for selection matrix. For simplicity nsic is set to 1 in order to allow comparison of perturbed
member with the control member for which a regular thinning scheme is always applied. An illustration
of this perturbation scheme applied to gridded SIC observation is shown in Fig. 3.

In practice, the above perturbation scheme was implemented as part of the linearized observation opera-
tor (G in Eq. 1) for dealing with any gridded surface observation, after it was interpolated to the irregular
NEMO ORCA grid. This scheme can be applied either to the global domain or to each sub-domain if
NEMO is running with multiple processors. It guarantees that the same number of valid surface obser-
vations is ingested by the ECMWF ODA for both the control member, which uses a regular thinning
scheme, and all perturbed members, which use the stratified random sampling scheme. In ORAS5 the
actual number of assimilated surface observations varies in different ensemble members, due to addi-
tional QC process, e.g. check for land-sea mask and distance to coast. It is also worth noting that even
though the sample selection matrix S(i, j) is randomly generated specifically for each ensemble member,
it is not evolving over time within the same assimilation window. Instead S(i, j) is only updated at the
beginning of each assimilation cycle. It can be considered as sub-optimal because daily averaged OS-
TIA SIC data is assimilated in the ECMWF ODA system. Revisiting this issue while considering the
assimilation window length may be needed in the future.

2.3.2 Perturbation of Sea Level observations

Radar altimeter Sea-Level Anomaly (SLA) observations are assimilated in the ECMWF ODA system
using NEMOVAR. The assimilated data set is along-track multi-mission altimeter SLA products from
AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic data) and include obser-
vations from ERS-1, ERS-2, ENVISAT, TOPEX/Poseidon, Jason-1, Jason-2, Jason-3, GFO, CryoSat-
2, SARAL and HY-2A. In order to assimilate the high spatial resolution along-track SLA data in the
ECMWF ODA system and to avoid the problem of oversampling [Zuo et al., 2015b], a super-observation
(superob) scheme as described by Mogensen et al. [2012] was implemented and was used in ORAS4 and
ORAP5 productions. In this scheme, a reduced grid (Lsla) is constructed with a resolution typically com-
parable to or greater than that of the model. Altimeter observations are then binned in time and space
to create super-observations. This way we effectively reduce the correlation of observation errors and
alleviate the problems with representativeness due to finite model resolution.
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i-2 i-1 i i+1 i+2

j+1

j

j-1

j+2

selected obs
not selected obs

Figure 3: A schematic plot of the perturbation scheme for surface gridded observations, as demonstrated
by a realization of perturbed SIC data with nsic = 1 and fsic = 2. Here circles represent input SIC records,
with black-filled circles denoting selected observations after applying the stratified random sampling. i
and j are indices for thinning boxes, with boundaries marked by dashed lines. For all thinning boxes
not at the boundaries, M(i, j) = 4 and Pt(i, j) = 1, so one observation is always selected (see Eq.4); For
M(i, j− 1) = 2, Pt(i, j− 1) = 0.5 so probability of selecting of one observation from the thinning box
(i, j−1) would be 50%.
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(a)
(b)

(c) (d)

(e) (f)

Figure 4: Satellite missions types (a,c,e) and values (in m) (b,d,f) of AVISO along-track SLA observa-
tions for an arbitrary chosen date (December 12, 2009) as: (a,b) the raw input data, (c,d) after superob-
bing and (e,f) thinning using stratified random sampling method. Three satellite missions are included
here as Jason-1 new orbit (in blue), Jason-2 (in green) and ENVISAT (in red).
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Here this superob scheme is adapted and we introduce a new thinning scheme allowing to account REs
of SLA observation more explicitly using a stratified random sampling method. First, a sampling grid is
constructed following the same strategy as for the superob grid [Mogensen et al., 2012]. Observations are
then organized into sub-groups according to satellite mission types as well as their spatial and temporal
locations. Instead of creating a superob based on sample mean of SLA observation values in the sub-
group, a random sampling is performed in each sampling grid box and one SLA observation from each
satellite mission type is selected as representative of this observation sub-group. The selected SLA
observation will be assimilated with its value and space/time position unchanged. As a first attempt, the
OBservation Error (OBE) standard deviation is specified in this thinning scheme in the same way as in
the superob scheme. It is defined as the standard deviation of the sample, bounded by a minimum value
ση (here ση=0.05 m) to compensate for cases when the observation sample size is too small (see Eq.38 in
Mogensen et al. [2012]). For illustration purpose, we show a daily example of the DUACS2014 AVISO
(see Pujol et al. [2016]) along-track SLA as the raw input data (Fig. 4a, 4b), after being processed
by the superob scheme as in ORAS4 (Fig. 4c, 4d), and by the thinning scheme as implemented in
ORAS5 (Fig. 4e, 4f). The spatial resolution of along-track AVISO SLA is approximately 14 km for
raw input data, as demonstrated in Fig. 4a with three satellite missions (Jason-1 New Orbit, Jason-2
and ENVISAT). Compared to the raw data, SLA superob-observations or observations after thinning
have been significantly reduced (by a factor of ~7) in observation number, to a spatial resolution of
approximately 100 km. The same number of valid SLA observations are used in each realization of the
thinning perturbation. Unlike the superob scheme, which was designed to reduce the REs by averaging
the SLA observations to a scale resolved by the model, the new thinning perturbation scheme tries to
take into account the REs of SLA observations explicitly using a stratified random sampling method.
Therefore SLA values with larger spatial variability are expected in the thinning SLA samples (Fig. 4f)
compared to that in the superobs (Fig. 4d).

3 Assessment of observation perturbations

Here we assess the ensemble estimates from different perturbation methods (See Table. 2) against the
diagonal elements of B and different independent observation data sets. For consistency, the ensemble
estimates were computed using model forecast (background) fields. Assessment of ensemble spread
against the diagonal elements of B was carried for all in-situ perturbation experiments using observation
space diagnostics.

We define the ensemble spread (σ e
b ) as the square root of the ensemble variance with respect to all ensem-

ble members. The ensemble spread arising from applying the above observation perturbation is evaluated
against specified BGE standard deviation (σ s

b) in the current ECMWF ORAS [Zuo et al., 2015a]. In ad-
dition, Desroziers et al. [2005] proposed a way to diagnose a-posteriori background and observation
error covariances by using innovations and analysis increments and assuming that the observation and
background errors are mutually uncorrelated. The BGE variances were diagnosed using the extended
Desroziers’ method (σd

b ) as developed by Weaver [2013], which can be applied to a biased system, by
removing the spatial mean error. As a result, it can be used as a good reference for checking the statistical
consistency of BGE covariance specifications.

Readers are reminded here that the specified BGE variances (σ s
b,X)

2 at observation points correspond
to the diagonal elements of univariate block-diagonal B. As a result, (σ s

b,X)
2 only accounts for the

unbalanced component of the BGE covariances, e.g. X = T,SU or ηU , where SU and ηU are unbalanced
salinity and sea-level, respectively. In practice (σ s

b,X)
2 at observation points can be estimated using
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a randomization algorithm as described by Andersson et al. [2000]. The diagnosed BGE variances
((σd

b,X)
2) using Desroziers’ method, however, account for both balanced and unbalanced components of

BGE covariances.

3.1 Experiments with observation perturbations

Assessment of observation perturbations as described above has been carried out using an ORAS5-
equivalent configuration but with a reduced model resolution (see Table 1 for common configurations).
Perturbation of sea-level observations is an exception as it has been carried out between 2000 and 2004
in ORCA025.L75 configuration [Bernard et al., 2006]. Because an eddy-permitting model resolution
is essential for accounting for the influence of sea-level perturbation, the results for the low resolution
model runs show that sea-level increment is dominated by balanced contribution from assimilation of
in-situ observations. Here perturbations of in-situ observations and surface observations were carried
out independently in order to assess contribution from different components in this ensemble generation
scheme. Table 2 gives a summary of all sensitivity experiments that were carried out with different
perturbation methods. Horizontal perturbations were always applied with P1 strategy, but with different
PD values. Three PD values of 200km (H pert200), 100km (H pert100) and 50km (H pert50) were
selected, which represent approximately the super-grid, grid, and sub-grid levels of the error scales with
respect to the horizontal resolution of the NEMO model. A thinning factor of N = 3 was used in all
experiments with vertical perturbations of in-situ observations.

Table 1: Summary of the system configurations for sensitivity experiments

NEMO model 1×1 degree with 42 vertical levels (ORCA1-Z42)

Observation Assim. temperature and salinity profiles from EN4, SIC from OSTIA [Donlon
et al., 2012]. No SST constrains.

Ensemble 5 ensemble members, including one control member that assimilates un-
perturbed in-situ observations

Period Experiments cover 2004-2011

3.2 Geographical distribution of ensemble spread

Geographical distributions of ensemble spread (σ e
b ) of temperature and salinity are compared with spec-

ified BGE standard deviations (σ s
b) and diagnosed BGE standard deviations (σd

b ) using Desroziers’
method. These three different estimates of σb are compared at observation locations, after being grouped
into regular 5°×5° grid, with their representative values derived by averaging all observation point values
within the box. For consistency, all three estimates have been evaluated by first computing the variances
(σb)

2 using their representative values of the same grid, averaging the variances in space and time, and
then taking the square root to obtain the standard deviations. The spatial distribution of σ e

b from three
Hpert experiments are rather similar, except that H pert100 and H pert50 show reduce magnitude com-
pared to H pert200. For simplicity, only σ e

b of H pert200 together with σ s
b and σd

b at depth 100m is
shown here in Fig. 5.

In ORAS4 as well as in ORAS5, BGE standard deviations for temperature are specified in terms of the
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Figure 5: Diagonal elements of B as estimated using the background ensemble spread (σ e
b ) (a,b), spec-

ified BGE standard deviations (σ s
b) (c,d) and diagnosed BGE standard deviations (σd

b ) (e,f). Shown are
the estimates for temperature (in K, left panels) and salinity (in PSU, right panels) at 100m depth. En-
semble spreads were computed as the standard deviations of temperature and salinity background fields,
temporally averaged over the 2004-2011 period, and spatially averaged into 5°×5° grid boxes.
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Table 2: Summary of perturbation configurations for sensitivity experiments

experiment H. pert. V. pert. SIC pert. SLA pert.

In-situ pert.

H pert50 PD=50 km - - -

H pert100 PD=100 km - - -

H pert200 PD=200 km - - -

H pertS15∗ PD=200 km - - -

V pert PD=0 km N = 3 - -

HV pert100 PD=100 km N = 3 - -

HV pert200 PD=200 km N = 3 - -

surf. obs. pert.
SICpert - - Lsic=~100km -

SLApert∗∗ - - - Lsla=~1°

N is the vertical thinning factor

Lsic is the SIC thinning length scale (See Eq. 4) and is ~100km in the Arctic Ocean

Lsla is the sea-level thinning length scale and is ~1° in latitude/longitude at the Equator

* H pertS15 is the same as H pert200 but with 15 ensemble members

** SLApert is in ORCA025.L75 configuration and integrated over the 2000-2004 period

vertical gradient of model background temperature using an analytical function, and with fixed lower
bounds in the mixed layer and in the deep ocean [Mogensen et al., 2012]. This way large σ s

b,T occurs
in the thermocline where ∂T b/∂ z is large, e.g. in the Tropics where the background temperature profile
is strongly stratified and the thermocline is relatively shallow (Fig. 5-(c)). This parametrization value is
sensible as verified against Desroziers’ diagnosed σd

b,T (Fig. 5-(e)). However, there are other regions also
with large σd

b,T values that were not captured by σ s
b,T in our current ODA system, e.g. in the Kuroshio

Current extension, Agulhas Current and Falkland Current Loop. The map of temperature ensemble
spread (Fig. 5-(a)), on the other hand, shows a similar amplitude and spatial pattern with σd

b,T , except for
the Tropics where the amplitude of temperature ensemble spread is underestimated compared both to the
σd

b,T and σ s
b,T .

Prescribed BGE standard deviations for unbalanced salinity (σ s
b,SU

) are parameterized in such a way so
that its largest value appears between the surface and the level of maximum ∂Sb/∂T b, and decreases
monotonically below this level. It was considered important to specify large values of σ s

b,SU
in the mixed

layer [Ricci et al., 2005]. As a result, minimum values of σ s
b,SU

can be found in the Tropical Indian and
Pacific as shown in Fig. 5-(d), because mixed layer depths are normally less than 100m in these regions.
In contrast, the maps of σ e

b,S and σd
b,S (Fig. 5-(b,f)), show a different spatial structure, more similar to

that of σb,T in the left panels, as if dominated by the balance component of the error in salinity. This is
not entirely surprising in the case of the ensemble estimate, since these experiments lack perturbations
to the surface fresh-water fluxes, a large source of uncertainty for the unbalanced salinity, but it does
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not explain the structure in the Desroziers’ estimate. The magnitudes are also very different among the
three estimates. The lower values of σd

b,S and σ e
b,S would suggest that σ s

b,SU
as specified in our current

ODA system is overestimated for unbalanced salinity. This is, however, subject to the specification of
observation errors since Desroziers’ diagnostics need to be discussed in the context of the ratio between
observation and background errors. Nevertheless, the large discrepancies between the specified σ s

b,SU
and

the other two estimates (σ e
b,S and σd

b,S) is a reason for concern, indicating that the specified σ s
b,SU

values
should be revised. In the end, using an ensemble-based estimation of BGE covariances as σ e

b,S may lead
to a better statistical consistency.

3.3 Vertical profiles of ensemble spread

In order to gain better understanding about the system uncertainty associated with different perturbation
strategies, we computed the vertical profiles of σ e

b for temperature and salinity, together with σd
b and

σ s
b. Because in-situ observations assimilated in each ensemble member are different with perturbed

positions, this observation-space diagnostics were also carried out by grouping variables in observation
locations into regular 5°×5° grid. The representative values for the same grid cell are then used to
compute ensemble variances and (σb)

2, before averaging in space and time, and finally taking the square
root to obtain the standard deviations. Here, the spatial averaging is performed over different ocean sub-
domains (global, northern extratropics: 30°N to 70°N, southern extratropics: 70°S to 30°S and tropics:
30°S to 30°N) within the vertical model grid cells. The time averaging is performed over the 2004-2010
period. The results can be found in Fig. 6 and 7.

Fig. 6 shows vertical profiles of temperature (σ e
b,T ) and salinity (σ e

b,S) ensemble spread from three H pert
runs and for V pert (see Table.2 for detailed configurations), as well as comparisons with σ s

b and σd
b for

different ocean domains. The ensemble σ e
b,T increases over depth in the Tropics (Fig. 6-(e)) until reaching

maximum (~0.24°C for H pert200) at thermoclines around 200m. The maximum value of σd
b,T , however,

is almost twice as large as σ e
b,T of H pert200 in the Tropics. Below 300m, σd

b,T and σ e
b,T in H pert200 are

very close to each other, with only small discrepancies at around 1000m. In both northern and southern
extratropics (Fig. 6-(a,c)), σ e

b,T from H pert100 shows very close correlation with the diagnosed BGE
standard deviation, except for the top 100m where H pert100 spread is smaller than σd

b,T .

Salinity ensemble spread decreases monotonically with depth on all the ocean domains. In the Tropics
(Fig. 6-(f)) σ e

b,S from in-situ horizontal perturbations varies between 0.03 psu (H pert50) and 0.06 psu
(H pert200) at the ocean surface. This is smaller than σd

b,S for the upper 300m, where salinity is described
predominately by its unbalanced component [Ricci et al., 2005]. Both temperature and salinity ensemble
spread drop quickly below 200m, with their magnitudes reduced significantly below 1000m. This is
partially because ocean observations are non-uniform and are often sparse and in-complete below this
depth range. The other contributing factor is that the reduced vertical gradients, so the RE is reduced.
As a result, a limited number of perturbed temperature and salinity profiles cannot effectively maintain
an adequate spread in the deep ocean. Spatial variations exist though, e.g. relatively larger tempera-
ture ensemble spread exists up to to 2000m in the North Atlantic Ocean (Fig. 7-(left)). As expected,
increasing the PD values in H pert experiments results in an larger ensemble spread for both tempera-
ture (Fig. 6-(a,c,e)) and salinity (Fig. 6-(b,d,f)). The vertical perturbation alone (V pert denoted by black
solid lines) introduces a noticeable system uncertainty but smaller than any horizontal perturbation ex-
periments (H pert). Ensemble spread in V pert is very weak for both temperature (<0.03°C) and salinity
(<0.005 psu) at all depths.

Compared with σd
b and σ e

b , the vertical profiles of prescribed BGE standard deviation (σ s
b) for both tem-
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Figure 6: Vertical profiles of σ e
b for (left panels) temperature (in K) and (right panels) salinity (in PSU)

in different perturbation experiments and σd
b from H pert200 (Cyan dashed lines), temporally averaged

over the 2004-2010 period, and spatially averaged over (a,b) northern extratropics (nxtrp: 30°N to 70°N);
(c,d) southern extratropics (sxtrp: 70°S to 30°S) and (e,f) tropics (trop: 30°S to 30°N). σ s

b from H pert200
(grey shaded areas) is also included here as a reference.
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Figure 7: As in Figure 6, but showing the ensemble spread of temperature (left panel, in K) and salinity
(right panel, in PSU) vertical profiles for the Northern Atlantic Ocean (between 40oW to 15oE and 30oN
to 70oN).

perature and salinity are more homogeneous across different ocean basins. Similar to the temperature
ensemble spread profiles, maximum σ s

b,T appears in the thermoclines and varies between 0.55°C-0.75°C,
depending on the ocean domains. A constant minimum value of σ s

b,T was set to 0.07°C for the deep
ocean. Vertical profiles of σ s

b,SU
have similar features, with a maximum value of 0.25 psu and a minimum

value of 0.02 psu. In the upper 200m, amplitudes of both σ e
b,T and σ e

b,S from all four sensitivity experi-
ments are smaller than those of σ s

b. The ensemble spread is also smaller than the specified background
error in the deep/abysal ocean. Since the ensemble generation only relies on observation perturbations
to create spread, it is likely that the ensemble spread results in an underestimation of the background
error. Inflating the ensemble spread for the upper 200m and applying a minimum value for the deep
ocean should be considered in the future when implementing an ensemble based specification of B co-
variances for the NEMOVAR ODA system. A hybrid strategy combing the empirical parametrization
with an ensemble spread information for σb specification should be exploited as well.

North Atlantic Ocean is quite a unique region when diagnosing ensemble spread generated by perturbing
temperature and salinity profiles. Unlike in the tropics and southern extratropics, H pert100 maintained
reasonable temperature spread below 100m (See Fig. 7-(left)) with a magnitude similar to σd

b,T . It is
also worth noting that a second maximum in the temperature spread appears at 2000m, with a value of
0.07°C and is larger than σd

b,T . Unlike other regions, temperature ensemble spread from V pert remains
non-negligible up to 2000m, with a mean value of ~0.03°C below 500m. It suggests that relatively large
uncertainty is associated with the reduced model vertical resolution in the deep ocean. Our ODA system
is less constrained and is very sensitive to the vertical structure of temperature and salinity observations
in the North Atlantic Ocean. It could be related to the misrepresentation of the Mediterranean Outflow
waters and their propagation over the North Atlantic Ocean, as discussed in Zuo et al. [2015b]. Fig. 8
shows the mean ensemble spread of the model temperature at 2000m for H pert50 and V pert, together
with σ s

b,T and σd
b,T as derived from H pert50 in 5°×5° grid cells. Here the magnitude of ensemble spread

in V pert (Fig. 7-(b)) is comparable with that in H pert50 (Fig. 7-(a)), both with pronounced temperature
spread (up to 0.25K) located in regions strongly affected by the Mediterranean outflow waters. These
regions with large model BGEs are also confirmed in the map of σd

b,T (Fig. 7-(d)), where large values
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Figure 8: Geographical distribution of temperature ensemble spread (in K) at 2000m in (a) H pert50
and (b) V pert. Specified (c) and diagnosed (d) BGE standard deviations were derived from H pert50.
Model ensemble spread was computed as standard deviations of background temperature with respect to
all ensemble members, and averaged over the 2004-2011 period.

of σ s
b,T (Fig. 7-(c)) are only found in regions very close to the Strait of Gibraltar. Additional attempts

have been made in order to reduce model errors in the North Atlantic Ocean, including implementation
of a salinity capping scheme and additional Quality Control (QC) check for rejecting spurious salinity
observations. Discussion of these other newly developed schemes is beyond the scope of this study,
which aims to focus on the perturbation scheme in ORAS5.

Additional experiments have been carried out in order to assess the additive effect of different pertur-
bation strategies when accounting for both horizontal and vertical REs, and to examine sensitivity to
ensemble size. These include sensitivity experiments HV pert100 and HV pert200 in which both hori-
zontal and vertical perturbations are activated (See Table 2), and a rerun of H pert200 with 15 ensemble
members (H pertS15). All other configurations are exactly the same as in Table 1. Vertical profiles of
ensemble spread from these three experiments are shown in Fig. 9. For simplicity we only show vertical
profiles in the Tropics for these experiments. Adding vertical perturbations to horizontal perturbations
has little impact on the temperature/salinity ensemble spread, which was demonstrated by comparing
HVpert200 with Hpert200. However, a small increase in temperature spread was found below 500m
with additional vertical perturbation. Increasing ensemble size to 15 in H pertS15 increases the temper-
ature ensemble spread at the thermocline, with its magnitude increased by ~20%. Growth of salinity
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Figure 9: As in Figure 6, but showing the tropical mean ensemble spread of the temperature (in K, left
panel) and salinity (in PSU, right panel) profiles from H pert200, HV pert200 and H pertS15, averaged
over the 2004-2006 period. σd

b (dashed lines in Cyan) and σ s
b (grey shaded areas) derived from H pert200

are also shown here.

ensemble spread was also noticed (Fig. 9-(right)), but with lower impact for the upper 300m. There-
fore, increasing the ensemble size is desirable considering that both temperature and salinity ensemble
spreads are sensitive to the ensemble size and becoming closer to σd

b in the Tropical thermocline with
larger number of perturbed members.

3.4 Temporal variability of ensemble statistics

The time-varying aspect of ensemble statistics associated with perturbation of in-situ observations has
been evaluated with the focus on Ocean Heat Content (OHC). OHC is a common Climate Change Indi-
cator (CCI) which represents the overall temporal evolution of the mean ocean state. Temporal variations
of global mean OHCs from V pert and H pert experiments at different depth ranges are shown in Fig. 10
as ensemble mean. In spite of different PD values, the ensemble mean OHCs from all three H pert
runs show similar trends both in the upper 700m (dashed curves) and for the whole water column (solid
curves). Compared to H pert50 and H pert100, in which PDs are less or equal to the model’s horizontal
resolution, H pert200 shows enhanced inter-annual variabilities of total OHC and slightly reduced OHCs
for the upper 700m.

In order to minimize spurious temporal signals introduced by changing observing system [Zuo et al.,
2015a], here the ensemble spread of OHC was computed using model analyses in model grids. This
is different from the observation space diagnostics in Section 3.2 and 3.3. Fig. 11 shows time-series
of the upper 700m OHC ensemble spread (the square root of the ensemble variance) from four in-situ
perturbation experiments. The ensemble spread gives a measure of the uncertainty introduced by REs
from temperature and salinity profiles. By construction, larger OHC ensemble spread is associated with
larger PD value when in-situ observations are horizontally perturbed. The OHC ensemble spread is
approximately proportional to the PD value, with three OHC ensemble spreads of 0.16, 0.35 and 0.81
(×107Jm−2), for H pert50, H pert100 and H pert200, respectively. There is no obvious temporal trend in
the time series of OHC ensemble spread. However strong inter-annual variations occur in the H pert200
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Figure 10: Time series of ensemble mean global Ocean Heat Content changes (in J/m2) as (top) OHC
anomalies with trends and (bottom) de-trended OHC anomalies. Shown are anomalies from H pert50
(red), H pert100 (green), H pert200 (blue) and V pert (black) after removal of the seasonal signals; in-
tegrated for the whole water column (solid curves) and for the upper 700m (dashed curves). OHCs are
computed using monthly mean model analyses and are normalized by the global sea surface area. A
12-month running mean smooth has also been applied to time series.

ensemble spread, suggesting some flow-dependent features which are still subject to the changing ob-
serving system. The amplitude of the ensemble spread produced by perturbations in the observation
spatial distribution in H pert200, although small in comparison with the total OHC trend since 2004 (less
than 10% of the total OHC trend), is about 85% of the mean interannual variability (0.95 ×107Jm−2,
black dashed line in Fig. 11) of the global OHC during the analyzed period.
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Figure 11: Same as in Fig. 10 but for the ensemble spread of upper 700m OHC. The ensemble spread
was computed as the square root of the ensemble variance from 5 ensemble members. Here the mean
value of 700m OHC inter-annual variability is also shown here in black dashed line as a reference.

In V pert where only the vertical perturbation was activated, the inter-annual variability of the ensem-
ble mean OHC is very similar to that in H pert50 (Fig. 10), but with much reduced ensemble spread
(0.2×106Jm−2, see Fig. 11) when integrated over upper 700m. As expected, most system variance as-
sociated with vertical perturbation resides in the deep ocean below 700m (not shown), due to reduced
vertical resolution in both observation profile and model in this region.

3.5 Evaluation against independent data

The reliability of the ensemble has been evaluated using independent observation data sets, with focus
on mean ocean state and ensemble variance. First, the mean ocean state was compared to World Ocean
Atlas 2013 data set (WOA13, see Locarnini et al. [2013]). WOA13 is an objective analysis data set
containing the mean state of global ocean as derived using broad ocean observations. Only results from
H pert experiments are discussed here for simplicity, since these are the major contributor to the ensemble
spread, as demonstrated in previous sections. Fig. 12-(top) shows the ensemble mean temperature biases
of H pert50 with respect to WOA13. Some of the largest biases are found in the Western Boundary
Currents (WBC) and their extensions. With the increase of PD value, the warm bias in the pathway of
Gulf Stream was reduced, as demonstrated by the averaged temperature differences between H pert100
and H pert50 in Fig. 12-(middle), and between H pert200 and H pert50 in Fig. 12-(bottom). However it
is not always the case and there is no obvious bias reduction in other regions with significant mesoscale
eddy activities. It is likely due to the fact that in-situ observations are unevenly distributed over space
and time. E.g. in-situ observations are much more densely populated in the Northern Atlantic Ocean
than in the Southern Ocean. It is also worth noting that the ensemble mean from any H pert experiments
shows reduced temperature bias with respect to the control member (not shown).

Reliability of the ensemble variance has been verified against independent observation data set, following
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Figure 12: Mean differences in temperature at 800m depth between: (top) H pert50 - WOA13; (mid-
dle) H pert100 - H pert50 and (bottom) H pert200 - H pert50. Differences have been computed using
ensemble mean model data after averaging over the 2004-2010 period.

a similar approach as that described in Yamaguchi et al. [2016].

1
N

N

∑
i=1

(ε2
i −σ

2
o,i−

M+1
M−1

(σ e
b,i)

2)→ 0, f or N→ ∞ (5)

Where ε2
i is the squared ensemble mean departure against observations, σ2

o,i is squared observation error,
(σ e

b,i)
2 is ensemble variance. Here M is the actual ensemble size and the subscribe i denotes the ith sample

within the total N independent sample cases. In a perfect ensemble with a M large enough, M+1
M−1 → 1 and

(σ e
b)

2 should match with ε2−σ2
o in an average sense.

Here the squared ensemble mean errors (ε2 in Eq. 5) are estimated in observation space using the
ensemble mean departure against OSTIA SST, after removal of the mean bias and seasonal cycle signal.
The OSTIA SST data was not assimilated in any sensitivity experiments and therefore can be treated as an
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independent observation data set. Both OSTIA SST and the model ensemble mean SST are interpolated
to a regular 1°×1° grid for computing the ensemble variance and the ensemble mean error. Readers are
reminded to keep in mind that both ensemble variance ((σ e

b)
2) and ensemble mean error are computed

using model analyses instead of model forecasts here, because model forecasts were not archived in
our system. Nevertheless, we expect that the analysis variance is a good approximation of the forecast
ensemble variance in both spatial and temporal distribution, except for slightly reduced magnitude [Daget
et al., 2009]. As a results, comparison as shown below still provides a good estimation of perturbation
performance when verified against observation data set.

Verification results from the three H pert experiments are shown in Fig. 13. The observation error of
OSTIA SST was estimated following a similar approach to Good et al. [2013], with an averaged value of
σ2

o of 0.05 K2 for the Tropics (-20°S - 20°N) and 0.11 K2 for the Northern Hemisphere (20°N - 70°N),
respectively. Fig. 13-(b,d,f) show that ε2−σ2

o , when verified against OSTIA SST data, remains almost
unchanged regardless of the different PD values used in these experiments. All three experiments show
similar geographical distribution pattern in SST ensemble variances. The amplitude of (σ e

b)
2 increases

from H pert50 (Fig. 13-(a)) to H pert200 (Fig. 13-(e)), following the increases of PD values. There is also
similarity between (σ e

b)
2 pattern and ε2−σ2

o , both with large values at WBCs, the Antarctic Circumpolar
Current (ACC) and the Falkland Current Loop. The ensemble variance, however, is in general under-
dispersive compared to the ε2−σ2

o , even for H pert200 with super-grid PD value.

3.6 Assessment of surface observation perturbations

The generic perturbation scheme for surface SIC observations has been evaluated in experiment SICpert
(See Table. 2), in which only gridded SIC data from OSTIA was perturbed with 5 ensemble members,
including a control member using regular thinning of SIC data. Maps of gridded SIC data valid for
assimilation after thinning in the control member and in one of the perturbed members from SICpert are
shown in Fig. 14.

At the stage of writing this report there is no suitable independent SIC observation data set for assessment
of the ensemble variance of SIC. Therefore, we choose to use the same OSTIA SIC product that was
assimilated in SICpert for verification. One should keep in mind that it is only to provide a guideline
for the ensemble variance reliability check and is subject to lack of knowledge about the observation
uncertainty from OSTIA SIC data. Here we compare the ensemble spread of SIC in SICpert to ensemble
mean RMS errors against OSTIA SIC, with the results shown in Fig. 15. Ensemble spread was computed
as SIC standard deviation using model analyses, then averaged over the period 2004-2011. As expected, a
large ensemble spread of SIC is found mostly in the ice edge regions and near the coast, with a standard
deviation normally less than 2 percent. In the Arctic Ocean, maximum SIC ensemble spread can be
found near the Canadian Archipelago, in the northern Baffin Bay and along the west coast of Greenland
(Fig. 15-(c)), with a maximum value of 5 percent. There are, however, large seasonal variations and
SIC spread can reach as much as ~10 percent in the boreal summer, e.g. in the northern edges of the
Barents Sea and Kara Sea when the ice is retreating (Fig. 16-(left)). It is equivalent to 50% of SIC
uncertainty if normalized against local SIC. There is less SIC ensemble spread in the Antarctic ((Fig. 15-
(d)) than in the Arctic Ocean in SICpert. If only SIC observations are perturbed, SIC ensemble spread is
considered under-dispersive almost everywhere when compared to the SIC ensemble mean RMS errors
(Fig. 15-(a,b)).

Additional SIC ensemble spread is expected from surface perturbations that account for uncertainties
from both the structural errors and analysis errors of SIC observations, and will be discussed in details in
Section 4. It is also worth noting that regardless of the fact that SIC assimilation is treated as univariate in
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Figure 13: Geographical distribution of (a,c,e) (σ e
b)

2 (in K2) and (b,d,f) ε2−σ2
o when verified against

OSTIA SST, for (a,b) H pert50, (c,d) H pert100 and (e,f) H pert200. Both (σ e
b)

2 and ε2 have been
computed using monthly mean SST from three perturbation experiments, and averaged over the 2004-
2011 period.
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Figure 14: Daily averaged gridded SIC data from OSTIA as assimilated in SICpert in (left) the con-
trol member with regular thinning; and in (right) a perturbed member using stratified random sampling
method with fsic = 2 and nsic = 1. Here thinning box length-scale is approximately 100 km in the Arctic
Ocean.

our current ODA system, perturbation of input SIC data has an indirect impact on the sea ice thickness,
especially for areas covered by thick Multi-Year sea ice (Fig. 16-(right)). Furthermore, introducing REs
for SIC data affects other ocean state variables, e.g. leads to growth of heat transport uncertainty across
the Denmark Strait. It is because the changed sea ice concentration will have an influence on the model
first guess for the next assimilation window.

The perturbation of SLA observations using the thinning scheme was evaluated in the experiment SLApert
(See Table 2). In order to take into account mesoscale eddy activities, SLApert is conducted with an
eddy-permitting resolution ORCA configuration (ORCA025.L75 with a grid of 0.25° at the equator),
and AVISO along-track SLA data is assimilated in additional to other observations (See Table 1 for de-
tails). A sampling grid greater than that of the model is constructed, with Lsla=~1° in latitude/longitude
at the equator. Following the same approach as in Section 3.5, the SLA ensemble variance ((σ e

b)
2) in

SLApert was verified against the gridded Maps of SLA (MSLA) from AVISO (see Pujol et al. [2016]).
Here the squared observation error (σ2

o ) in L4 AVISO MSLA was estimated using the same method as in
Ducet et al. [2000]. The squared ensemble mean departure against observation (ε2) was computed using
monthly mean SLA fields. By design, this L4 gridded MSLA is correlated with the L3 along-track SLA
data assimilated in SLApert, and therefore it cannot be considered totally independent. Nevertheless,
these diagnostics still provide useful information about regions with large model errors in sea level and
can be used as a guideline for checking the SLA ensemble variances reliability. Geographical distri-
butions of (σ e

b)
2 and ε2−σ2

o from SLApert can be found in Fig. 17 as climatological mean. Regions
with large SLA ensemble variance (>0.04 m2) include the WBCs (e.g. in Gulf Stream and Kuroshio
extensions, Agulhas and Malvinas Current regions) and in the ACC pathways. These are the regions
with strong mesoscale eddy activity which are not fully resolved in our model (even in ORCA025 reso-
lution), thus corresponding to large REs. (σ e

b)
2 and ε2−σ2

o show very similar spatial patterns in general.
However, (σ e

b)
2 is slightly under-dispersive, e.g. for the East Australian current. Additional sensitivity

experiment has been carried out to test SLA perturbation in ORCA1-Z42 configuration, with a sam-
pling grid that is comparable to the model grid. This is effectively reducing specified REs compared
to SLApert. Magnitude of the SLA ensemble variance in this experiment is almost everywhere much
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Figure 15: Geographical distributions of (a,b) SIC ensemble mean RMS error (in percentage) as verified
against OSTIA gridded SIC, and (c,d) SIC ensemble spread from SICpert for (a,c) the Arctic and (b,d)
the Antarctic. Both ensemble mean RMS error and ensemble spread were computed using monthly mean
SIC analyses from SICpert and averaged over the 2004-2011 period.
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Figure 16: Geographical distributions of ensemble spread from (left) SIC (in percentage) and (right) sea
ice thickness (in m) in SICpert. Ensemble spread was computed using monthly mean fields in July 2007.

smaller (<0.001 m2) than that in SLApert (not shown). This is mainly because that mesoscale activity is
not represented at all in the low-resolution model set-up and therefore SLA assimilation is dominated by
contributions from the balance operator (e.g. increments from temperature and salinity). As a result, the
sea level variability is strongly constrained by in-situ observations in ORCA1 configuration.

4 Surface forcing perturbations

4.1 The new forcing perturbations scheme

The use of forcing or surface perturbations in the production of ocean reanalysis was first introduced
at ECMWF in the context of the seasonal forecasting S2 [Vialard et al., 2005]. The perturbations were
applied to sample the uncertainty in the ocean initial conditions. This first version of forcing perturba-
tions (v1 in what follows) consisted of SST and wind stress (TAU, hereafter) perturbations. Wind stress
perturbations were added to the forcing fields during the production of the ocean reanalysis, resulting in
spread in the ocean subsurface, especially along the thermocline. SST perturbations were applied within
the ocean mixed layer at the beginning of the coupled forecasts. The SST perturbations were simply dif-
ferences of monthly anomalies (i.e., the differences in the mean seasonal cycle were removed) between
two data sets. Thus, the SST perturbations were differences between the SST OIv2 [Reynolds et al.,
2002] and the SST used in ERA40 [Uppala et al., 2005], which came from an early version of the NCEP
SST product. For any given calendar month, the perturbation pattern was randomly selected from a sam-
ple repository constructed from monthly SST anomalies differences that covered the period 1982-2002
and stratified by calendar month. For each ensemble member and date, a random number was generated
and was used for picking the perturbation pattern. By repeating the procedure, this scheme was able
to produce an arbitrary number of ensemble realisations. Similar approach was taken in order to con-
struct the repository for wind stress perturbations, using monthly differences in the wind stress anomalies
from two historical reconstructions. In this first version of the perturbations, monthly mean wind stress
anomalies differences between the estimates from Southampton Oceanographic Center (SOC) and the
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Figure 17: Geographical distributions of (top) (σ e
b)

2 of SLA (m2) and (bottom) ε2−σ2
o when verified

against AVISO DUACS2014 MSLA. Both SLA ensemble variances and ε2 have been computed using
monthly mean SLA analysis from SLApert, and averaged over the 2000-2004 period.
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ERA-15 reanalyses were used. The differences sampled the 1979-1993 time span.

Later on, with the introduction of the seasonal forecasting system S3 [Anderson et al., 2007], the per-
turbation data set was updated to version v2, which was also used for the EU funded ENSEMBLES
project. In this revised version, the wind stress perturbation repository was updated to represent the dif-
ferences between the ERA40 and NCEP-CORE atmospheric reanalysis, which allowed longer records
(1958-2002) and therefore larger number of independent realizations. The SST perturbation repository
was also increased to include differences between the historical data sets HadISSTv1 and ERSST (NOAA
Extended Reconstruction of monthly SST). These SST perturbations and methodology were later used in
the atmospheric EDA (see document in http://www.ecmwf.int/sites/default/files/docu perturbations.pdf).

Although the v2 perturbation method is generic enough, the error patterns are now considered to be
obsolete since they probably over-estimate uncertainties for recent SST and wind stress products. The v2
perturbations are based on monthly fields. Representing uncertainties in shorter time scales is considered
important, especially for the medium range forecasting and for the imminent atmospheric reanalysis
ERA5, which also uses an EDA approach. There is also a need to extend perturbations to the sea-
ice concentration and to other surface fluxes, like the surface fresh water flux from Precipitation and
Evaporation (P-E) and Solar Radiation (SR). It is also considered important to preserve the multivariate
relationships between the perturbed variables.

In view of these shortcomings, we decided to create a new perturbation scheme (v3) based on more recent
observational data sets, such as the 10 ensemble members ERA-20C atmospheric reanalysis [Poli et al.,
2016], the high resolution SST and SIC analysis (ESA-CCI), and the 10 ensemble members HadISSTv2
[Titchner and Rayner, 2014]. A summary of this new v3 perturbation scheme can be found in Table 3.
Designed for ensemble generation of ocean reanalyses, this perturbation scheme v3 has been applied in
the production of ORAS5. It has also been used to provide SST/SIC perturbations in ERA5 produc-
tion, as described in Hirahara et al. [2016]. Since Cycle 43R1, this new perturbation scheme has been
introduced to generate the operational EDA.

In general, a perturbation is a k-dimensional vector ε = (ε1,ε2, ...εk), representing the uncertainty of
k different variables. Both surface state variables (e.g. SST and SIC) and surface fluxes (e.g. TAU,
P-E, and SR) are included in the v3 perturbation. Another major update in v3 is that we distinguish
between two fundamental kind of uncertainties: Structural Error (SE), which is obtained by comparing
data sets produced by different methods; and the Analysis Error (AE), which is the error estimated by a
single analysis method such as the EDA. Sometimes, the uncertainty from one variable can propagate to
others (Multivariate Error, hereafter ME) when considering multivariate relationship among variables.
For instance, the uncertainty in SIC can propagate to SST (this does not appear explicitly in Table 3).

Each kind of uncertainty is characterized by the data sets and the temporal records used to build the
perturbation repository. The size of the temporal record and number of data sets (or ensemble members)
will determine the sample size of the perturbation repository, as discussed below. A given data set can
sometimes allow for different temporal sampling (or temporal decorrelation scale δ ). We denote εδ ,i(d)
a single realisation of the estimated error valid for a date d, with a given temporal decorrelation scale
δ , arising from a given source of uncertainty ( i = SE,AE,ME). Here both the temporal correlation and
source of uncertainty are considered independent, therefore the total perturbation ε(d) at any given time
d can be expressed as the sum of the individual perturbations as:

ε(d) =
N

∑
i=1

n

∑
δ=1

εδ ,i(d) (6)
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Table 3: Summary of Forcing Perturbations v3

Variable Source Temporal
Correlation

Time Record and
Size (N j

δ ,i)
Sample
Size (Nδ ,i)

Structural Error (SE)

TAU univariate

Bulk 1: NWPatm - < Bulk > monthly 2006-2013 (8x2)

144 (8x2x9)

Bulk 2: EIatm - < Bulk > monthly 2006-2013 (8x2)

Bulk 3: EIwaves - < Bulk > monthly 2006-2013 (8x2)

Bulk 4: EIcore - < Bulk > monthly 2006-2013 (8x2)

NCEP - ERA40: time period 1 monthly 1993-2000 (8x2)

NCEP - ERA40: time period 2 monthly 1985-1992 (8x2)

NCEP - ERA40: time period 3 monthly 1977-1984 (8x2)

NCEP - ERA40: time period 4 monthly 1969-1976 (8x2)

NCEP - ERA40: time period 5 monthly 1961-1968 (8x2)

SST univariate < HadISST v2.1 > - ESACCI monthly 1997-2006 (10x2) 20

SIC univariate < HadISST v2.1 > - < HadISST v2.0 > monthly 1997-2006 (10x2) 20

Analysis Error (AE)

SST∗/P-E
/SR/TAU
multivariate

ERA20C-i∗∗ - < ERA20C >
i=1, ..10
HadISSTv2-i - < HadISST v2 >
i=1, ..10

monthly 1979-2006 (28x2)
i=1, ..10

560
(28x2x10)

pentad 1997-2006 (10x2)
i=1, ..10

200
(10x2x10)

* SST AE repository from HadISSTv2

** HadISSTv2 SST is used in production of ERA20C

where εδ ,i(d) is an error realisation taken randomly from the i-th category of uncertainty, with temporal
decorrelation scale δ and at a date d. Here n≥ 1 and δ can be monthly and/or pentad (see Table 3); N = 2
and i = SE,AE. We will discuss the different uncertainty categories below, but before it is pertinent to
describe the temporal aspects of the perturbations.

4.2 Temporal Decorrelation Scales and Temporal Interpolation

Error patterns can have different characteristic temporal resolution δ (monthly or pentad in v3) depending
on the temporal resolution of original products, or depending on the application. Monthly perturbations
are obtained by computing monthly means and removing the 12-month climatological seasonal cycle.
The pentad temporal resolution is obtained in a similar manner. Perturbations with different temporal
decorrelation scales are considered additive. On the other hand, the temporal decorrelation scale of a
perturbation is not the same as the temporal discretization of the application, which often requires daily
fields. To generate daily perturbation values from a pentad or monthly repository, a variance preserving
time interpolation is applied. For a given date d, random patterns representative of the two closest
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adjacent dates, d− and d+, are drawn and then interpolated to the date d as follows:

εδ ,i(d) = w−εδ ,i(d
−)+w+

εδ ,i(d
+) (7)

The values d− and d+ represent the centre of the temporal interval (day 15th for monthly and day 3rd for
pentad). In the case of monthly perturbations, they represent indices corresponding to previous (d−) and
current (d+) calendar months, if d is before day 15th; or to current (d−) and next calendar (d+) months,
if d is after day 15th. The temporal weights w− and w+ are proportional to the distance between dates
and are normalized in the quadratic sense, such as w−2

+w+2
= 1 :

w =
d−d−

d+−d−
(8)

w− =
1−w√

w2 +(1−w)2
(9)

w+ =
w√

w2 +(1−w)2
(10)

The quadratic normalization is chosen in order to homogenise the error spread over time. A standard
bilinear interpolation would result in an artificially reduced spread when w = 0, e.g., whenever d = d+ or
d = d−. This procedure also allows preserving the temporal correlation of the original sampling in our
daily perturbation record. In the previous version v2 the temporal interpolation was standard bilinear.

4.3 Multiple Variables and Sources of Uncertainty

As for previous perturbation schemes, the perturbations in v3 are sampled from different data sets, which
provides a natural way of specifying the spatial and temporal correlation of the perturbations. In v3 the
range of perturbations has been substantially increased. The source of v3 perturbations for SST and SIC
are the same as those described in Hirahara et al. [2016] for the pentad perturbations used in ERA5. The
temporal resolution has been extended to include monthly time scales in v3, which is more relevant for
ocean reanalysis applications. For consistency, all the perturbation repositories in v3 are interpolated into
a common 1°lon/lat regular grid.

Table 3 gives details about the data sets and sample sizes of the perturbation repositories. An individual
perturbation can be applied either with a + or a − sign, and therefore the effective sample size of an
individual data record j as N j

δ ,i in Table 3 is twice the number of years in the record. When multiple data
sets ( j ≥ 1) are available for a given source of uncertainty i and temporal resolution δ , the total sample
size Nδ ,i is the sum of the sample size of the individual data records, as if we were dealing with different
ensemble members

Nδ ,i = ∑
j

N j
δ ,i (11)

When additive perturbations are considered, the total sample size is the product of the different additions

N = ∏
δ ,i

Nδ ,i (12)
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As mentioned before, v3 considers two fundamental types of uncertainty (AE, SE). SE is provided for
three variables: SST, SIC and TAU. These are univariate, although when applying SIC perturbations the
total SST field would be adjusted to impose consistency between SST and SIC (the total SST should
be at freezing point in the presence of a given threshold of SIC). The univariate SST perturbations have
been created by sampling differences between HadISSTv2.1 ensemble mean and ESACCI spanning the
period 1997-2006, with pentad and monthly temporal discretization. Hirahara et al. [2016] discuss that
these perturbations are commensurable with the uncertainty in the OSTIA SST product, which is the
main SST data set from 2008 onwards. The SIC perturbations are monthly, obtained as the differences
between HadISSTv2.1 and HadISSTv2.0. The main difference between these two products is in the SIC
component, being Rayner et al. [2003] and Titchner and Rayner [2014] (hereafter RA03 and TR14) in
v2.0 and v2.1, respectively. RA03 is based on a microwave-derived sea ice from the Goddard Space
Flight Center (GSFC) and the National Centers for Environmental Prediction (NCEP). In TR14 the
reprocessed SIC from Ocean and Sea Ice Satellite Application Facilities (OSI-SAFr) is bias-adjusted
toward ice charts from the US National Snow and Ice Data Center (NSIDC), and connected to chart
analyses in the past. These two products are inter-calibrated and applied a melt-pond bias correction
before being combined. The SE SST and SIC perturbations span the period 1997-2006, and therefore
each of them contains 10×2 independent samples per calendar month (or pentad), when considering the
arbitrary +/− sign.

The SE TAU perturbations are univariate vector fields, with coherent values in the zonal and meridional
components of the wind stress error, but they do not have correlations with any other variable. The
temporal resolution is monthly. The existing v2 repository (differences between ERA40 and NCEP) is
still used - in a different manner as in v2, see below - but more recent data sets are exploited to create
the repository (See Fig. 19 for differences between v2 and v3). In addition, the SE TAU perturbation
repository in v3 contain records of wind stress monthly fields spanning the period 2006-2013, estimated
in four different ways:

• Daily fluxes from ERA-Interim reanalysis (EIatm, 0-24h forecasts)

• Daily fluxes from Operational Numerical Weather Prediction (NWPatm, also the 0-24h forecast )

• Daily wind stress using a bulk formulation that takes into account the ocean currents and the drag
coefficient from the atmospheric waves (EIwaves, following Breivik et al. [2015])

• Daily wind stress using a modification of the CORE bulk formulation (EIcore, see Janssen [2008]),
also using ERA-I 6-h analysis variables.

Departures of these different estimates with respect to their ensemble mean < Bulk > are referred as
“Bulk 1,2,3,4” in Table 3, and are treated as four different ensembles of 8-year length each. The old
perturbations v2 are divided in 5 periods of 8-year length each, each period being treated as a sepa-
rate ensemble in the repository, with the most recent period having the lowest time period number in
Table 3. In total there are 9 ensemble members in the SE TAU repository, each containing 16 (8x2)
realizations. By separating the period into different ensemble members it is possible to include some
low frequency variability in the perturbations when sampling the repository. In practice, perturbations in
ORAS5 before 1990 sample the 9 ensemble members of SE TAU repository, which implies using differ-
ences between ERA40 and NCEP from the whole 1960-2000 period. For the 1990-2000 period, ORAS5
perturbations use only the first 7 ensemble members (excluding time period 4 and 5), implying that only
NCEP-ERA40 differences since 1977 are utilized. After 2000, ORAS5 does not use any ERA40-NECP
differences. Choice of the ensemble members as above has been made based on the assumption that
these low frequency variabilities in model error are only important for the period before 2000 in ORAS5.
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Figure 18: Standard deviation (sdv) of the SST SE perturbations in v3 (top) and v2 (bottom). The
perturbations in v3 have smaller spatial scale than in v2, and are largest along the eddy active regions in
the ocean. In contrast, the SST uncertainty in v2 is larger along the Eastern Equatorial Pacific.
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Figure 19: Standard deviation of the zonal wind stress perturbations for January (a,c,e) and July (b,d,f).
The analysis and structural uncertainty in v3 appears in (a,b) and (c,d), respectively. (e,f) show the
standard deviation of perturbations in v2 as SE. The analysis uncertainty (AE) in v3 occurs mainly in the
Southern Ocean. The v3 structural uncertainty (SE) affects mainly the gyres, and shows a clear seasonal
dependence. The wind stress perturbations in v2 are much larger than these in v3, e.g. in the Eastern
Tropical Pacific and almost everywhere in the southern extratropics. It is commensurable with the zonal
wind stress interannual variability.
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Figure 20: Standard deviation of the SIC SE perturbations in v3 for January (a), April (b), July (c) and
October (d). There are clear seasonal variations in the SIC SE perturbation, in both the spatial distribution
and magnitude.
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Figure 21: Standard deviation of the v3 AE perturbations in January (a,c,e) and July (b,d,f), for SST
(a,b), solar radiation (SR) (c,d) and precipitation minus evaporation (P-E) (e,f).
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To sample the AE, the information from the 10 ensemble members of HadISSTv2 and ERA20C is used.
Monthly perturbations have been created for the period 1979-2006, forming a total sample size of 560.
We also computed pentad perturbations for the period 1997-2006, with a sample size of 200. Multivariate
relationship between variables are preserved in the AE perturbations, by using the the same ERA20C
ensemble member for any given set of SST (SST is constrained by HadISSTv2 in ERA20C), TAU, P-E
and SR perturbations. As shown in Fig. 21, there is a clear spatial correlation between the SR and P-E
AE perturbations in both January and July. There is also connection in spatial pattern between P-E and
SST perturbations, e.g. both show large values in the pathway of Gulf Stream.

Tests comparing monthly versus pentad perturbations indicated that the monthly perturbations were more
effective in creating spread in the ocean fields (not shown). Therefore, the five ensemble members of
the ocean reanalysis ORAS5 only use the monthly perturbations for either SE and AE. The pentad
perturbations of SST can be later added at the time of initializing the coupled forecasts with the purpose
of expanding the ensemble of ocean initial conditions (from 5 ensemble ocean reanalyses to N ensemble
members, where N is typically 50 or 51). The main features of the new v3 perturbations are illustrated in
figures Fig. 18, 19, 20, 21, in terms of their standard deviation: how they compare with v2 perturbation
(Fig. 18), the magnitude of the SE and AE errors (Fig. 19), the seasonal dependence (Fig. 20) and the
multivariate aspects (Fig. 21).

5 Summary and discussion

A new generic ensemble generation scheme has been developed at ECMWF for ODA and ORAS, in-
cluding perturbations of both assimilated observations and surface forcing fields. This new perturbation
scheme has been applied in production of ORAS5. The surface forcing perturbation has also been applied
in ERA5 production and in operational EDA system since cycle 43R1. The observation perturbation is
designed to account for observation REs. It includes perturbation of geographical location of the in-situ
observation and horizontal thinning of the surface observations. It also includes vertical thinning of the
in-situ observation profiles. In general, system variance generated by observation vertical perturbation
is small compared to that generated by horizontal perturbation, subject to the way of constructing the
thinning levels and to the vertical resolution of model. For vertical perturbation, contribution to model
uncertainty predominately comes from depths below 700m where the vertical resolution of both the
model and observation profiles is significantly reduced.

The diagonal elements of B estimated using ensemble spread (σ e
b ) generated by the observation perturba-

tion have been evaluated against prescribed (σ s
b) and diagnosed (σd

b ) BGE standard deviation, as well as
independent observation data sets, in a series of sensitivity experiments. Large discrepancies are found
in the spatial structure and values of different estimations of σb, with the σ s

b,SU
being notably different

from those given by σ e
b,S and σd

b,S. Therefore, a revision of the specied BGE and ensemble generation is
needed. Improvement in assimilation statistics are expected by combining parameterized and ensemble
based flow-dependent estimation of BGE covariances in the ECMWF ODA system.

When verified against observations, large (σ e
b)

2 and squared ensemble mean departures appear mostly
in eddy active regions, e.g. in the WBCs and extensions, and the ACC, although the ensemble variance
appears underestimated. The SST ensemble variance from all sensitivity experiments with in-situ obser-
vation perturbations appears also under-dispersive when compared to ε2−σ2

o as verified against OSTIA
SST. In the deep ocean large errors can be found in the North Atlantic Ocean around 2000m, which is
related to the misrepresentation of the Mediterranean Outflow waters. The errors in these areas are well
captured by the ensemble spread generated by the observation perturbation.
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Results from sensitivity experiments suggest that super-grid PD value in horizontal perturbation is nor-
mally needed in order to maintain a reasonable ensemble spread allowing to account for observation
REs. It is also noticed that a reasonably large size of the ensemble member is needed at the Tropical
thermocline, where the ensemble spread with 5 ensemble members is considered under-dispersive for
both temperature and salinity when compared to σd

b . More tests with different ensemble sizes may be
needed in order to justify any potential improvement for estimation of the BGE covariances against the
extra computational cost of producing more ensemble members.

For ORAS5 production, the geographic locations of all ocean in-situ profiles are horizontally perturbed
with PD = 50km using strategy P1. This perturbation distance is chosen while considering the REs of
ocean in-situ observations at ORAS5 model resolution. Arguably this is a choice that may need revisiting
since different observation types may have different features regarding their REs, e.g. observations from
tropical moored buoys are stationary and less biased, therefore can be assigned with a reduced PD value.
The in-situ observation vertical perturbation was also applied in ORAS5 with a thinning factor of N = 2.
So no more than 2 observations within each model level are randomly sampled for data assimilation.
Additional impact studies of using REs in the NEMOVAR system is also needed in the future, e.g. impact
on the shallow water region due to observation rejection and on regions with strong eddy activities.

Additional perturbations were introduced in ORAS5 for surface observation types such as SIC and SLA.
The SIC from OSTIA were perturbed using a stratified random sampling method with a thinning fac-
tor of fsic = 2, which can be applied to any surface gridded observations. In ORAS5, additional SIC
perturbation was also generated from surface perturbation including both SE and AE uncertainties. The
SLA observations from AVISO were perturbed through a similar random sampling method, which was
developed based on the superobbing scheme as implemented in ORAS4. Assessment of ensemble spread
from SLA perturbation was carried out against AVISO MSLA gridded maps, with the results showing
very consistent geographical distribution between ensemble spread and ensemble mean errors.

A new version of the surface perturbation (v3) scheme has been developed. It perturbs surface variables
including SST, SIC, wind stress, net precipitation and solar radiation, by taking into accounts both SE
from different analyses data sets (e.g. ESACCI and HadISSTv2), and AE from the same analysis method
with multiple ensemble members (e.g. ERA20C). This new surface perturbation scheme also preserves
the multivariate relationship between different variables, by using the same ERA20C ensemble member
for a given set of SST, TAU, P-E and SR perturbations. Daily perturbation is created using a variance
preserving time interpolation method, and can be derived from perturbation repositories constructed with
different temporal de-correlation scales. Uncertainties from different sources (AE, SE) or with different
temporal de-correlation scales are considered to be independent and therefore can be added together. As
with previous versions, the surface forcing perturbation scheme does not sample systematic biases by
construction. This new surface perturbation scheme has been applied in ORAS5 production, and also
used to create ocean surface perturbation for ERA5 and for operational EDA since Cycle 43R1. At the
moment only monthly perturbation has been used in ORAS5 ensemble generation. In the future, both
monthly and pentad perturbation should be considered, and multivariate relationship between SIC and
SST perturbation should be taken into account in a more explicit way.

Acknowledgements

This work has been partly funded by the ESA CCI Sea Level project. The authors would like to thank
Simon T.K. Lang, Kristian Mogensen and Martin Leutbecher for fruitful discussions. Anthony Weaver
(CERFACS) also helped in interpreting the results.

40 Technical Memorandum No. 795



A generic ensemble generation scheme for data assimilation and ocean analysis

References

D. Anderson, T. Stockdale, M. Balmaseda, L. Ferranti, F. Vitart, F. Molteni, F. Doblas-Reyes, K. Mogen-
son, and A. Vidard. Development of the ECMWF seasonal forecast System 3. ECMWF Tech Memo,
(Technical Report 503), 2007.

E. Andersson, M. Fisher, R. Munro, and A. McNally. Diagnosis of background errors for ra-
diances and other observable quantities in a variational data assimilation scheme, and the ex-
planation scheme, and the explanation of a case of poor convergence. Quarterly Journal of
the Royal Meteorological Society, 126(565):1455–1472, 2000. ISSN 1477870X. doi: 10.
1256/smsqj.56511. URL http://www.ingentaselect.com/rpsv/cgi-bin/cgi?ini=
xref&body=linker&reqdoi=10.1256/smsqj.56511.

M. A. Balmaseda, A. Vidard, and D. L. T. Anderson. The ECMWF Ocean Analysis System: ORA-S3.
Monthly Weather Review, 136(8):3018–3034, 2008. ISSN 0027-0644. doi: 10.1175/2008MWR2433.
1. URL http://journals.ametsoc.org/doi/abs/10.1175/2008MWR2433.1.

M. A. Balmaseda, K. Mogensen, and A. T. Weaver. Evaluation of the ECMWF ocean reanalysis system
ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674):1132–1161, 2013.

B. Bernard, G. Madec, T. Penduff, J.-M. Molines, A.-M. Treguier, J. Le Sommer, A. Beckmann, A. Bi-
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S. M. Uppala, P. W. KÅllberg, A. J. Simmons, U. Andrae, V. D. C. Bechtold, M. Fiorino, J. K. Gib-
son, J. Haseler, A. Hernandez, G. A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R. P. Allan,
E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. V. D. Berg, J. Bidlot, N. Bormann,
S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. Hólm,
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