Simulation in the greyzone with the Finite-Volume Module of the IFS

Christian Kühnlein, Sylvie Malardel, Piotr Smolarkiewicz ECMWF colleagues and ESCAPE partners

$$\begin{split} &\frac{\partial\mathcal{G}\rho}{\partial t}+\nabla\cdot(\mathbf{v}\mathcal{G}\rho)=0\\ &\frac{\partial\mathcal{G}\rho\mathbf{u}}{\partial t}+\nabla\cdot(\mathbf{v}\mathcal{G}\rho\mathbf{u})=\mathcal{G}\rho\left(-\Theta_{d}\tilde{\mathbf{G}}\nabla\varphi'-\frac{\mathbf{g}}{\theta_{a}}\left(\theta'+\theta_{a}(\mathbf{e}_{d}'-\mathbf{v}\cdot\mathbf{v}_{a})\right)+\mathbf{f}\cdot\left(\mathbf{u}+\frac{\mathbf{u}}{\rho_{a}}\mathbf{u}\right)+\mathbf{M}(\mathbf{u})+\mathbf{D}\right)\\ &\frac{\partial\mathcal{G}\rho\theta'}{\partial t}+\nabla\cdot(\mathbf{v}\mathcal{G}\rho\theta')=\mathcal{G}\rho\left(-\tilde{\mathbf{G}}^{T}\mathbf{u}\cdot\nabla\theta_{a}-\frac{L}{c_{p}\pi}\left(\frac{\Delta q_{es}}{\Delta t}+k\right)+\mathbf{H}\right)\\ &\frac{\partial\mathcal{G}\rho\mu}{\partial t}+\nabla\cdot(\mathbf{v}\mathcal{G}\rho_{d})=\mathcal{G}\rho\mathcal{R}^{b}\mathbf{h}\\ &\frac{\partial\mathcal{G}\rho\varphi'}{\partial t}+\nabla\cdot(\mathbf{v}\mathcal{G}\rho\varphi')=\mathcal{G}\rho\sum_{\ell=1}^{3}\left(\frac{a_{\ell}}{\zeta_{\ell}}\nabla\cdot\zeta_{\ell}\left(\bar{\mathbf{v}}-\bar{\mathbf{G}}^{T}\mathbf{C}\nabla\varphi'\right)\right)+\mathbf{h}_{\mathcal{T}} \end{split}$$

Current operational configuration of the IFS:

- hydrostatic primitive equations (nonhydrostatic option available; see Benard et al. 2014)
- hybrid η − p terrain-following vertical coordinate (Simmons and Burridge, 1982)
- semi-implicit semi-Lagrangian (SISL) integration scheme (Temperton et al. 2001, Diamantakis 2014) \rightarrow permits long time steps!
- cubic-octahedral ("TCo") grid (Wedi, 2014, Malardel et al. 2016)
- HRES: TCo1279 (O1280) with $\Delta_h \sim$ 9 km and 137 vertical levels
- ENS (1+50 perturbed members): TCo639 (O640) with $\Delta_h \sim$ 18 km and 91 vertical levels

Nonhydrostatic dynamics

Idealized convective storm (Klemp et al. 2015) on a small planet (1/25 reduced) with H and NH formulation of IFS: From what horizontal grid spacing Δ_h appear significant differences?

 \rightarrow H-IFS and NH-IFS use Forbes et al. 2011 microphysics and similar numerical configurations, in particlar TCo grid, FD in vertical, ICI, no explicit diffusion, no convection scheme)

Nonhydrostatic dynamics

Idealized convective storm (Klemp et al. 2015) on a small planet (1/25 reduced) with H and NH formulation of IFS and NH-FVM:

 $\rightarrow \text{NH-FVM}$ uses smaller time steps and different microphysics parametrisation!

Finite-Volume Module of the IFS:

- deep-atmosphere nonhydrostatic Euler equations in geospherical framework (Szmelter and Smolarkiewicz 2010; Smolarkiewicz et al. 2016; Smolarkiewicz, Kühnlein, Grabowski 2017; Kühnlein, Malardel, Smolarkiewicz in prep.)
- · generalised height-based terrain-following vertical coordinate
- hybrid of horizontally-unstructured median-dual finite-volume with vertically-structured finite-difference/finite-volume discretisation (Szmelter and Smolarkiewicz 2010; Smolarkiewicz et al. 2016)
- all prognostic variables are co-located
- two-time-level semi-implicit integration scheme with 3D implicit acoustic, buoyant and rotational modes (Smolarkiewicz, Kühnlein, Wedi JCP 2014)
- non-oscillatory finite-volume Eulerian MPDATA scheme (Smolarkiewicz and Szmelter 2005; Kühnlein and Smolarkiewicz 2017; Kühnlein, Klein, Smolarkiewicz in prep.)

 $\int_{\Omega} \nabla \cdot \mathbf{A} = \int_{\partial \Omega} \mathbf{A} \cdot \mathbf{n} = \frac{1}{\mathcal{V}_i} \sum_{j=1}^{l(i)} A_j^{\perp} S_j$

dual volume: V_i , face area: S_i

terrain-following coordinate

median-dual finite-volume approach

ECMWE

Octahedral reduced Gaussian grid

Nodes of octahedral grid 'O24'

Primary mesh about nodes of octahedral grid in FVM

- octahedral reduced Gaussian grid (octahedral grid of size OX)
- suitable for spherical harmonics transforms applied in spectral IFS
 - → Gaussian latitudes ⇒ Legendre transforms
 - $\rightarrow~$ equidistant distribution of nodes along latitudes following octahedral rule $\Rightarrow~$ Fourier transforms
- FVM develops median-dual mesh around nodes of octahedral grid
- $\Rightarrow\,$ finite-volume and spectral-transform IFS can operate on same quasi-uniform horizontal grid
- → Malardel et al. ECMWF Newsletter 2016, Smolarkiewicz et al. JCP 2016
- \rightarrow operational at ECMWF with HRES and ENS since March 2016
- Mesh generator and parallel data structures for FVM provided by ECMWF's Atlas framework (Deconinck et al. 2017)

Dry baroclinic instability (Ullrich et al. 2014) with FVM and spectral-transform IFS (ST):

 Nonoscillatory finite-volume MPDATA advection scheme features implicit regularisation at the grid scale

Kinetic energy spectra O640/TCo639 ($\Delta_b \approx 18$ km), day 15

Finite-volume and spectral-transform solutions in IFS

Moist baroclinic instability with FVM and spectral-transform IFS (ST) with large-scale condensation and diagnostic precipitation:

 Finite-volume solutions achieve accuracy of established spectral-transform IFS for moist flows

Finite-volume and spectral-transform solutions in IFS

Moist baroclinic instability with FVM and spectral-transform IFS (ST) with large-scale condensation and diagnostic precipitation:

 Finite-volume solutions achieve accuracy of established spectral-transform IFS for moist flows

Tropical cyclone simulations with coupling to parametrisations for large-scale condensation with diagnostic rain, surface fluxes and PBL diffusion (Reed and Jablonowski 2011) on O640/L60:

Higher resolution with FVM

 \rightarrow Driven by numerical and computational advancements, globally high resolutions are becoming standard in FVM

Coupling FVM to IFS physics parametrisations

- \Rightarrow Keep IFS physics parametrisations (mostly) unchanged, and couple to FVM by means of its own flexible interface
 - FVM uses octahedral grid and non-staggered variable arrangement in horizontal, like in IFS
 - FVM uses height-based versus pressure-based vertical coordinate
 - · FVM uses smaller (and optionally variable) time steps

Subcyling dynamics with simplified physics parametrisations

Tropical cyclone simulations with coupling to parametrisations for large-scale condensation with diagnostic rain, surface fluxes and PBL diffusion (Reed and Jablonowski 2011) on O160/L60:

Wind speed (m/s) in horizontal section at $z \approx 1 \, \text{km}$

Estimates	of	maximum	slopes	of IFS	global
		mean orog	graphy:		

Grid	Δ_h	max. slope
O1280	9 km	9°
O1600	6.5 km	10°
O2000	5 km	17°
O4000	2.5 km	30°
O8000	1.25 km	$>$ 50 $^{\circ}$
O16000	0.625 km	$> 70^{\circ}$

Orography spectra at various NWP centres

FVM simulation of stratified flow past steep orography with maximum slope ~ 70° on a reduced-radius planet after 2 h (vertical wind (m/s), meridional wind (m/s) in lon-height section at lat=0, lon-lat section at z=2 km), cf. Zängl et al. QJ 2015.

Variable resolution and adaptive meshes

Tropical cyclone simulations with FVM at uniform (upper row) and variable resolution (lower row) meshes (primary mesh, wind speed in m/s in at $z \approx 1 \text{ km}$, wind speed in zonal-height section):

Rising thermal simulation with adaptive moving meshes

- FVM/Atlas will provide support for variable resolution by changing the mesh in computational space
- FVM optionally offers moving mesh adaptation via continuous mappings in physical space
- Variable resolution and mesh adaptivity in the horizontal and/or vertical can permit to better/explicitly resolve processes in fine regions but may require parametrisation in coarse regions
- Needs criteria where to put finer resolution
- Generally very little experience with variable resolution and mesh adaptivity in global NWP

Outlook: multi-grid approaches for dynamics and physics

Proof-of-concept: SL tracer advection on coarsened mesh (M. Diamantakis, W. Deconinck)

- experimentation with multigrid capabilities provided by Atlas (e.g. tracer advection on coarser grid)
- radiation is already run at coarser spatial (and temporal) resolution in IFS but using different technique
- flexible future framework to study systematically running (some) physics parametrisations at coarser/finer spatial resolution than dynamics

- $\Rightarrow\,$ FVM, an ongoing development at ECMWF, complements the established spectral-transform IFS with novel capabilities
 - \rightarrow nonhydrostatic governing equations
 - → flux-form nonoscillatory advective transport
 - \rightarrow robustness wrt steep orography
 - \rightarrow variable resolution and adaptive meshes
 - From which Δ_h do nonhydrostatic effects become important? Experimentation with IFS so far indicates that Δ_h = 2.5 km could still employ hydrostatic primitive equations for medium-range weather forecasting
 - variable resolution can be a way forward, if we find criteria where to refine and physics parametrisations scale-aware
 - multigrid capability using Atlas will permit to systematically investigate physics parameterisations to be run on coarser/same/finer grid wrt to dynamics
 - FVM interface to IFS physics parametrisations is under development, and the model is progressing towards realistic medium-range NWP forecasts

Further reading:

- Kühnlein C., P. K. Smolarkiewicz, A. Dörnbrack, Modelling atmospheric flows with adaptive moving meshes., J. Comput. Phys., 2012.
- Szmelter J., P. K. Smolarkiewicz P.K, An edge-based unstructured mesh discretisation in a geospherical framework., J. Comput. Phys., 2010.
- Smolarkiewicz P.K., C. K
 ühnlein, N. P. Wedi, A discrete framework for consistent integrations of soundproof
 and compressible PDEs of atmospheric dynamics., J. Comput. Phys., 2014.
- Smolarkiewicz P.K., W. Deconinck, M. Hamrud, C. Kühnlein, G. Modzinski, J. Szmelter, N. P. Wedi, A finite-volume module for simulating global all-scale atmospheric flows., J. Comput. Phys., 2016.
- Kühnlein C., Smolarkiewicz P.K., An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics., J. Comput. Phys., 2017.
- Smolarkiewicz P.K., C. K
 ühnlein, W. W. Grabowski, A finite-volume module for cloud-resolving simulations
 of global all-scale atmospheric flows., J. Comput. Phys., 2017.
- Deconinck W., P. Bauer, M. Diamantakis, M. Hamrud, C. Kühnlein, G. Mengaldo, P. Marciel, T. Quintino, B. Raoult, P. K. Smolarkiewicz, N. P. Wedi, Atlas: The ECMWF framework to flexible numerical weather and climate modelling., https://doi.org/10.1016/j.cpc.2017.07.006, 2017.
- Waruszewski M., C. Kühnlein, H. Pawlowska, P. K. Smolarkiewicz, MPDATA: Third-order accuracy for arbitrary flows, submitted to JCP
- Kühnlein C., S. Malardel, Smolarkiewicz P.K., Finite-volume and spectral-transform solutions in IFS, in preparation for GMD
- Kühnlein C., R. Klein, Smolarkiewicz P.K., Splitting of advection in an all-scale atmospheric model, in preparation for MWR

