

#### COUPLING PHYSICAL PARAMETERIZATIONS TO A THREE-DIMENSIONAL SEM MODEL

Alex Reinecke<sup>1</sup>, Kevin Viner<sup>1</sup>, Sasa Gabersek<sup>1</sup>, Matus Martini<sup>2</sup>, James Doyle<sup>1</sup>, John Mickalakes<sup>3</sup>, Frank Giraldo<sup>4</sup>

U.S. Naval Research Laboratory, Monterey, USA
 DEVINE Consulting, Monterey, USA
 UCAR, Boulder, CO
 Naval Postgraduate School, Monterey, USA

ECMWF Workshop on Shedding Light on the Greyzone 13-17 November 2017 Reading, England





#### 1. NEPTUNE Overview

- 2. Idealized physics simulation (DCMIP)
- 3. Real-data, full physics testing
- 4. Physics dynamics coupling



## NEPTUNE

- <sup>1</sup>NEPTUNE Future NWP for U.S. Navy
  - Non-hydrostatic, deep atmosphere formulation
  - 3D spectral element technique (high-order accurate)
  - 1D Implicit-Explicit (IMEX) 3<sup>rd</sup>-order Additive Runga Kutta (ARK3) time integration
- Flexible limited area and global grid options
  - Sphere-centered Cartesian coordinate system on the cubed sphere for global applications
  - Cartesian coordinate system for limited area applications

<sup>1</sup><u>NEPTUNE</u>: <u>N</u>avy <u>E</u>nvironmental <u>P</u>rediction sys<u>T</u>em <u>U</u>tilizing the <u>N</u>UMA<sup>2</sup> <u>E</u>ngine <sup>2</sup><u>NUMA</u>: <u>N</u>onhydrostatic <u>U</u>nified <u>M</u>odel of the <u>A</u>tmosphere (F. Giraldo NPS)





## NEPTUNE Dynamical Core Spectral Element Formulation

- Solution is represented by a set of orthogonal polynomial basis functions
  - High-order accuracy with excellent computation density and scalability
  - Projects well onto next-generation computer architectures
- Orthogonality implies that solution is known at the roots of the polynomial basis functions. Irregularly spaced in the horizontal and vertical.
  - Physics implementation on irregular gird doesn't seem to be an issue
  - Potential to extract additional information from basis functions for physics



<sup>1</sup><u>NEPTUNE</u>: <u>N</u>avy <u>E</u>nvironmental <u>P</u>rediction sys<u>T</u>em <u>U</u>tilizing the <u>N</u>UMA<sup>2</sup> cor<u>E</u> <sup>2</sup><u>NUMA</u>: <u>N</u>onhydrostatic <u>U</u>nified <u>M</u>odel of the <u>A</u>tmosphere (F. Giraldo NPS)

# NEPTUNE AND IDEALIZED MOIST PHYSICS (DCMIP)



#### U.S.NAVAL RESEARCH LABORATORY

# **DCMIP Idealized Test Cases**

**SE Grid** 



N

Linear Grid

- DCMIP\*: June 2016 at NCAR
  - Evaluate NH dynamical cores with idealized moist physics test problems

Three tests:

- Moist Baroclinic Wave (parameterized convection)
- Ideal Tropical Cyclone (parameterized convection, parameterized BL, simple saturation adjustment)
- Supercell on a reduced radius sphere (Kessler MP)
- Questions for NEPTUNE:
  - What is the sensitivity of model solution to the representation of the vertical coordinate?
  - Can we map our vertical coordinate to a regularly spaced vertical grid?

\*Ullrich et al, 2017. DCMIP2016: A Review of Non-hydrostatic Dynamical Core Design and Intercomparison of Participating Models. GMD, in press.



# **DCMIP Supercell test case**

- Reduced radius sphere
- Buoyant parcel in unstable sheared environment
- Kessler microphysics, constant mixing
- Relies on explicitly resolved convection
- Run at 4, 2, 1, 0.5km horizontal spacing
- Figure shows NEPTUNE maximum vertical velocity at all resolutions for 4 potential physics grid configurations



#### **Maximum Vertical Velocity**



# **DCMIP Supercell test case**

- Comparison of 5km vertical velocity and cloud water mixing ratio for 4km (left) and 0.5km (right) horizontal grid spacing for 4 potential physics grid configurations
- Note significant change in structure from better resolved convection



#### $\Delta x = 4 \text{ km}$



#### Δx = 0.5 km

# INITIAL IMPLEMENTATION WITH GFS PHYSICS





#### Physics in NEPTUNE Coupling to GFS

- To expedite NEPTUNE development, we implement physics suites using an interoperable physics driver (IPD)
  - IPD allows different centers to share common physics suites using a standardized interface
  - Standardization allows testing between dynamical cores using common physics
- Use IPD to implement GFS hydrostatic physics suite into NEPTUNE
  - Advantages: Quick access to a fully developed NWP physics suite
  - **Disadvantage**: IPDv4 does not allow tailoring of the suite
  - Questions remain: Is it possible to use a generic physics suite without customization to a specific dynamical core?



#### GFS Physics Sequential Split/First Order Coupling

- GFS physics is run as a sequential process and split from the dynamics time step
  - Tendencies are added as N forward Euler time steps

$$q_{0} = D(q^{n})$$

$$q_{1} = q_{0} + \Delta t \cdot P_{1}(q_{0})$$

$$q_{i} = q_{i-1} + \Delta t \cdot P_{i}(q_{i-1})$$

$$\vdots$$

$$q^{n+1} = q_{N-1} + \Delta t \cdot P_{N}(q_{N-1})$$

- Geopotential heights are adjusted due to heating after each forward step
  - Consistent with hydrostatic dynamics



## Initial Full Physics Implementation Real data run comparison – TPW

47.4

43.5

39.6 35.6

31.7 27.8

23.8 19.9 15.9

12.0 8.1

4.1 0.2

47.4 43.5

39.6 35.6

31.7
27.8
23.8
19.9
15.9
12.0
8.1
4.1
0.2

# IFS Analysis

**NEPTUNE Forecast** 



- First step: Initialize with GFS initial conditions and evaluate forecasts against IFS analysis
- Relatively coarse resolution initial tests ~49 km
- Qualitative evaluation as a gross check on physics implementation

#### **Initial Full Physics Implementation** Real data run comparison – Convective Precipitation

**IFS Analysis** 



- First step: Initialize with GFS initial conditions and evaluate forecasts against IFS analysis
- Relatively coarse resolution initial tests ~49 km
- Qualitative evaluation as a gross check on physics implementation
- Parameterized convective precipitation along ITCZ and mid-latitude cyclones

## Initial Full Physics Implementation Large Temperature Trends

#### T(NEPTUNE) - T(IFS Analysis) @ 250 hPa

**U.S.NAVAI** 



- Rapid and substantial cooling of NEPTUNE temperatures
- ΔT of 5-10 degrees in 24-48 h forecast relative to IFS
- Not clear if it was a physics, dynamics, or physics-dynamics coupling issue



#### Dry Mass Loss in NEPTUNE Relative Mass Change

- NEPTUNE was not conserving dry mass loss in dynamics
- Two main issues were identified and fixed
  - Application of the lower boundary in the presence of terrain for 3D spectral elements
  - Use of Cartesian winds instead of contravariant winds in elements





# PHYSICS DYNAMICS COUPLING AND THE GREYZONE



## **Grey Zone Physics** Hydrostatic Physics in a NH model

- NEPTUNE is non-hydrostatic with isochoric coordinate system
  - Designed for multi-scale simulation with global and limited area applications
- GFS physics package is hydrostatic with an isobaric pressure coordinate
  - Targets synoptic to sub-synoptic hydrostatic scales
- What should we think about when coupling the two?
  - Incompatibilities between hydrostatic physics and nonhydrostatic dynamical core?
  - Can the spectral elements be exploited?





#### Physics-Dynamics Coupling Two Experiments

**C Control**: Given isobaric physics adjustment and T increment, update  $\theta$  directly back to model levels



Adjustment: Given  $\Delta \phi$  and T increment, compute updated  $\theta/\rho$  on dynamics grid by hydrostatically adjusting pressure back to the constant height dynamics levels



Adjustment: Given  $\Delta \phi$  and T increment, linear interpolate all physics increments back to the constant height dynamics levels



## **Δθ due Hydrostatic Adjustment** 48-h NEPTUNE forecast



Initialization: 2015110700

- NEPTUNE E96P3L64 (~33 km average nodal spacing) forecast
- Most significant differences in tropical upper troposphere
- Large differences associated with deep convection in tropics



#### SE Coordinate Implications for Physics



- SE vertical coordinate is unique in NEPTUNE. Can we exploit it?
  - Solution represented by orthogonal polynomial basis
    - Natural to run physics at quadrature/nodal points
    - For 3<sup>rd</sup>-degree polynomials, negligible sensitivity in physics to non-uniform spacing of the quadrature points

Physics sees the input as a piecewise linear function

- Gauss-Legendre polynomial space is much richer than a piecewise linear function of the nodal points
- Resolution of the GL polynomial space is higher than that suggested by the nodal spacing\*
- Can we increase the vertical and horizontal grid spacing so that the linear representation is consistent with the polynomial basis?
  - How does this relate to the greyzone?



- How to blend existing physics packages and the spectral element numerical framework?
- Fast processes, such as mixing, should be consistent and tightly coupled with the dynamics

$$q_d = D(q^n) + P_F(q^n)$$
$$q^{n+1} = q_d + P_S(q_d)$$



- To be consistent with the dynamics, the spectral element numerics should be used to compute derivatives and inversions within the physics routines.
  - Which parameterizations, if any is this true for?



- Development of NEPTUNE continues at NRL
  - Evaluating the system with NWP physics suites
  - Unanswered questions on the best way to couple physics to a non-hydrostatic spectral element dynamical core
- SE methods offer a unique opportunity to explore the greyzone and physics-dynamics coupling issues
  - Parameterizations may need to account for and adjust to highorder numerics
  - The rich polynomial basis can potentially be used to improve the grid point representation in the parameterizations