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Overview
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increase the resolution - resolve 
more of deep convection 

investigate resolution dependency 
of the resolved flow and of the 
subgrid processes 

further the understanding of 
convective processes 

Challenges we face come from  

1) subgrid physics,  

2) resolved dynamics and  

3) their coupling  

(and I think it is equally important 
to address all three) 



The two case studies

B. Stevens
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Model: ICON-NWP, ICON-LEM (Daniel’s talk) 

Two cases:  

        Germany 5.5.2013                     and                  Tropical Atlantic 20.12.2013



Challenge 1: formulation of the subgrid physics
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How to parameterize the variability?

The main closure parameter is the total mass flux M in a grid cell.
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main assumption of a convection parameterization:  
a grid box is large enough to hold a cloud ensemble which is uniquely determined by the 

imposed forcing 

however, subgrid cloud samples are not statistically robust;  
given the same conditions imposed on the grid cells, different realisations of subgrid convection 

are possible 

fluctuations increase with increasing 
resolution 

a stochastic cloud ensemble to 
achieve a scale-aware 

representation of fluctuations of 
subgrid convection around the 

ensemble average state 
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 cloud ensemble in analogy to statistical ensembles 
(Craig and Cohen, 2006; Plant and Craig 2008,…) 

Chapter 9

Canonical ensemble

9.1 System in contact with a heat reservoir

We consider a small system A1 in thermal interaction with a heat reservoir A2 such that
A1 << A2, i.e., A1 has fewer degrees of freedom than A2 (see Fig. 9.1).

Figure 9.1: Small system A1 compared to the reservoir A2.

A1 is characterized by E1, V1, N1 and A2 by E2, V2, N2 with:

E2 >> E1,

N2 >> N1,

N1 = const,

N2 = const,

and E1 + E2 = E = const.

Both systems are in thermal equilibrium at temperature T . The wall between them
allows interchange of heat but not of particles. The system A1 may be any relatively
small macroscopic system such as, for instance, a bottle of water in a lake, while the lake
acts as the heat reservoir A2.

The question we want to answer is the following:

⇒ under equilibrium conditions, what is the probability Pα of finding the small system
A1 in any one particular microstate α of energy Eα? In other words, what is the
distribution function ρ of the system A1?
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A statistical ensembleA cumulus cloud ensemble

Arakawa and Schubert (1974)

Find a set of variables to describe the 
cloud ensemble… 

Challenge 1: formulation of the subgrid physics



Cloud population distribution 

We are interested in the cloud population distribution of cloud-base mass flux            . p(m)

Arakawa and Schubert (1974):

mi = ⇢ ai wi

we define the mass flux of each cloud as
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m, ⌧, N, M =
NX

i

m

(Craig and Cohen, 2006; Plant and Craig 2008; Sakradzija et al. 2015, 2016)



Stochastic cloud ensemble

(Craig and Cohen 2006; Plant and Craig 2008; Sakradzija et al. 2015, 2016) 
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scale-aware distribution 
of the total mass flux

p(M)

M

10 km
50 km1 km

Two sampling processes: 

n random number of clouds is 
drawn from the Poisson distribution: 

m is sampled from the Weibull 
distribution: 

A grid box then contains a random 
number of clouds that have different 
areas and mass flux values.

p(n) =
hNine�hNi

n!

p(m) =
k

�k
mk�1e�(

m
� )

k

- number of clouds in a grid box 
- ensemble average number of 
clouds 
- mass flux of a single cloud 

hNi

M =
nX

i=1

mi

n

m



Why Weibull distribution? - memory 

correlation of mass flux with lifetime sets k (universal constant) 
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Physical constraints on the ensemble distribution

p(m) =
k

�k
mk�1e�(

m
� )

k

Bowen ratio is the only parameter that has a power to alter the overall shape of p(m) 
by controlling the efficiency of the convective heat cycle. 
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FIG. 10. a) Reproduction of the distribution form of the RICO-base case by altering the Bowen ratio of the

ARM case to B = 0.03; b) Reproduction of the distribution form of the ARM-base case by altering the RICO

case Bowen ratio to B = 0.33.
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B =
FSH

FLH

B = 0.03 B = 0.03

B = 0.3 B = 0.3

Sakradzija, M., and C. Hohenegger,  

What determines the distribution of 

shallow convective mass flux through 

cloud base?  

J. Atmos. Sci., 2017
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The scale-aware mass flux distribution in ICON-NWP

as a result of subsampling, we get the resolution-dependent p(M)

Resolution-dependent distribution of 
the perturbed cloud-base mass flux

Resolution independence of the bulk 
mass flux 

p(M)p(M)
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p(M)

 [arbitrary]  

ICON-LEM
ICON-NWP



A shallow convective day in Germany, 5.5.2013

MODIS  
satellite image
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ICON-LEM 156m resolution  
coarsened to 1.2 km 
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deterministic Tiedtke-Bechtold  
shallow convection

MODIS  
satellite image

A shallow convective day in Germany, 5.5.2013
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stochastic Tiedtke-Bechtold  
shallow convection

MODIS  
satellite image

A shallow convective day in Germany, 5.5.2013



Scale-adaptivity

p(M)

reference: ICON-LEM

p(σ) p(σ)p(σ)

p(M)

ICON-NWP
stochdet

p(M)

 [arbitrary]  
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1 km

100 m

by Matthias Brueck, MPI-M

Evaluation of ICON in Realistic LES Configuration 83

Table 4. Values derived for the boundary-layer height and the convective velocity,
temperature and humidity scales, for the three ICON domains, the semi-idealized

(SI) simulations with PALM and ICON and the observations.

zi w∗ θ∗ q∗
(m) (m s−1) (K) (mg kg−1)

ICON 625 m 1315 2.03 0.11 42.2
ICON 312 m 1385 1.97 0.10 46.6
ICON 156 m 1424 1.99 0.10 46.0
PALM-SI 1175 2.03 0.10 33.4
ICON-SI 1528 2.39 0.11 48.2
OBS 1395 1.66 0.07 37.6
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Figure 12. Spectra of total kinetic energy of the three nested domains and
COSMO on 26 April at noon. The black solid and dashed lines indicate the
power laws with the exponents −5/3 (Kolmogorov spectrum) and −3 (synoptic
spectrum), respectively. The grey dashed line indicates a value 50% below the
Kolmogorov spectrum.

with a C-grid and has been found for global weather prediction
models (Z15), as well as for idealized LES (D15).

5. Water vapour

For the evaluation of temporal variations of integrated water
vapour (IWV), a time series for the days 24–26 April and
2 May 2013 was used at the supersite JOYCE, where various
ground-based observations of IWV were also available. To
evaluate IWV on the entire simulation domain, it is compared
with IWV measurements of the global positioning system (GPS).
Furthermore, simulations from COSMO and IWV retrievals from
MODIS on board the polar-orbiting satellite Aqua are also used
as references.

5.1. Temporal evolution and variability

Figure 13 shows the temporal evolution, as well as small-
scale temporal variability of IWV at JOYCE. The temporal
resolution of the various instruments and models is as
follows: GPS 15 min, microwave radiometer (MWR) 2 s
(Rose et al., 2005), sunphotometer 10 min (Alexandrov et al.,
2009), radiosonde several times daily, MODIS near-infrared (NIR,
Gao and Kaufman, 2003) and infrared (IR, Seemann et al., 2003)
at the Aqua and Terra overpass times and COSMO 15 min. The
temporal resolution of the time series at the ICON grid points is
5 min during the spin-up phase of the model, 0000–0600 UTC
for 24 and 25 April and, due to output problems, 0000–1800 UTC
on 26 April. During the remaining time, the resolution is 10 s.
For ICON and COSMO, the IWV value of the nearest model grid
point to JOYCE was taken.

On 24 April 2013, IWV increases constantly by about 10 kg m−2

from approximately 15 kg m−2, with strong small-scale variations
after noon (1200–1500 UTC). Afterwards, IWV is more or
less constant until noon on 25 April and starts to decrease
subsequently. On the third day, there is a strong increase of
IWV from 0100 UTC to 1300 UTC from 17 to 28 kg m−2. The
IWV decreases to 17 kg m−2 until the end of 26 April. On 2 May
there is no strong tendency in IWV. It varies between 17 and
22 kg m−2 during the day. In general, both models, ICON and
COSMO, match the measurements well in terms of the temporal
evolution. Most of the time, the models lie within the range of the
various IWV measurements. However, the small-scale temporal
variability of IWV, which can be seen in the measurements of
the MWR, is only captured by ICON due to the higher temporal
resolution. This is demonstrated more clearly in the zoomed-in
time period, shown in the upper panel of Figure 13, during which
strong small-scale temporal variability was observed. While the
high variations on 24 April occur at the same times on 25 April,
ICON shows high variability a few hours earlier than the MWR
measurements.

5.2. Spatial distribution

Figure 14 shows the MODIS–Freie Universität Berlin (FUB)
IWV distribution (Diedrich et al., 2015b), with a horizontal
resolution of 1 km at nadir, and ICON and COSMO simulations
at the MODIS/Aqua overpass time at about 1230 UTC on
24 April 2013. The IWV fields are overlaid with IWV derived
from GPS observations (Gendt et al., 2004) provided by the
GeoForschungsZentrum (GFZ) Potsdam. Note that the observed
IWVs are not height-corrected; however, only GPS stations with
a height difference lower than 20 m and located at a height below
400 m above sea level are used. There is no dependence of bias
due to any height difference. Further quality checks were applied
to the GPS data to exclude erroneous stations due to e.g. wrong
meteorological data or receiver problems. This resulted in 124 GPS
stations out of the available 400 in the dataset used for comparison.

The MODIS–FUB IWV retrieval is only applied to pixels
identified as clear-sky and over land surfaces. Retrieved low
values of IWV around cloudy areas may be due to optically
thin clouds or sub-pixel clouds not correctly masked out, e.g. in
the northeast corner of the domain. IWV retrievals near water
surfaces can also be problematic and may lead to too high IWV
values.

The observations show that IWV values within the domain vary
from about 5 to 25 kg m−2, but also that geographical variability of
the IWV field occurs at large scales. For most stations, GPS shows
slightly higher IWV values than MODIS. In comparison with the
observations from MODIS and GPS, the simulated horizontal
distributions of IWV look very similar, with the highest values
in the northwest and lowest values in the south of the model
domain. Some regional differences can be identified between the
observations and the models, e.g. in the eastern part of Germany
both models underestimate the IWV, while further north towards
the coast the IWV is overestimated. Overall, both ICON and
COSMO appear to have similar biases when compared with
both MODIS and GPS. The high spatial resolution of ICON is,
for example, clearly visible in the northwest, where small-scale
variability in the IWV field with high values up to about 25 kg m−2

are simulated, which is not visible in the COSMO IWV field.
Table 5 shows the bias and bias-corrected root-mean-square

error (RMSE) between IWV from all GPS stations shown in
Figure 14 and IWV from ICON and COSMO simulations,
allowing for a more quantitative evaluation. Results are computed
for the MODIS/Aqua overpass time on 24 April 2013, as well as
for all matching time steps, with a temporal resolution of 15 min,
for the days 24–25 April and 2 May 2013. 26 April is not included
in this comparison, since for this day the data obtained from
GFZ were incomplete and therefore were not yet included in

c⃝ 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. 143: 69–100 (2017)

convective circulations depend on 
the grid resolution in the gray zone  

explicit shallow convection is 
under-resolved 

artificial organization modes 

model effective resolution 
(Skamarock, 2004) 

Challenge 2: correcting the under-resolved model dynamics

Heinze et al., 2017



A shallow convective day in Germany, 5.5.2013
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                           LEM to 1.2 km                                    no convection
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                           stochastic                                           no convection

A shallow convective day in Germany, 5.5.2013



Idealized case - RICO in ICON
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The histograms resulting from the stochastic simulations in the model configuration with active grid-scale
dynamics are improved further and match the LES histograms better than in the SCM-like configuration
(Figure 8). This additional improvement comes from the grid-scale flow and emergence of convective circu-
lations that impose a spatial preference in EDMF for stronger convection in the updraft regions, and also
because stochastic parameterization improves the grid-scale convective flow regime (see section 4.4). These
results imply that the SCM configuration of numerical models is not appropriate nor sufficient for testing
convective parameterizations, because the interaction of parameterization with model dynamics can have
significant implications for the test outcome. On top of this, the LES coarse-grained diagnostics would be
sufficient for training parameterizations only if the effects of model dynamics are negligible, which is not
the case in the RICO cloud field on a wide range of model grid resolutions.

4.4. Grid-Scale Dependent Secondary Circulations
As demonstrated in the previous sections, the emergence of grid-scale circulations has a strong effect on
the simulation outcomes. Here we describe the circulations that emerge in the convective gray zone, and
we emphasize the difference in the convective flow regimes caused by the choice of the deterministic or
stochastic convective parameterizations.

Figure 8. Histograms of the cloud fraction above the cloud base across different grid resolutions. The histograms computed from the
coarse-grained cloud fraction of LES RICO-140 are used as a reference case. The histograms resulting from the deterministic EDMF (green),
the stochastic EDMF in the SCM setup (blue) and the stochastic EDMF in the ICON setup that includes model dynamics (purple) are
compared to the reference histograms.

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000634

SAKRADZIJA ET AL. A STOCHASTIC SCHEME FOR SHALLOW CUMULI 802

ICON setup with doubly-periodic 
boundary conditions over a large 

domain of about 400x400 km2 

Who is in control? 

dynamics is driving the deterministic 
parameterization 

stochastic parameterisation takes over 
the control as the  

scale-dependent fluctuations alter 
convective flow dynamics 

so, 

it is a good idea to constrain 
fluctuations by some physical principle 

Sakradzija et al., 2016



A shallow convective day in Germany, 5.5.2013 
Cloud cover histograms
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GermanyGermany

low level cloud fraction



Cloud cover histograms - regions
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Parameterizations should be applied at those scales where the processes are well 
resolved (model effective resolution) - “believable scales”. 

Parameterization and dynamical truncation scales should be separated (Lander and 
Hoskins, 1997)  

"If these low-amplitude small-scale features are fed into the parameterization, a 
parameterization can produce the tendencies of high-amplitudes but on the same small 
scales. These high-amplitude small-scale features can not be considered as believable 
phenomena, but can only be classified as noise.” (Lander and Hoskins, 1997)  
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idealised RICO case in ICON-NWP

Challenge 3: physics-dynamics coupling and the artificial noise

on-off behaviour: convection 
removes instability too quickly/
strongly, and switches off at 
the next time step 
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Artificial noise could be reduced/removed 
by using dual grids (Williamson 1999) or 
by averaging the input into the 
parameterization to filter out the 
unbelievable scales (Plant and Craig, 
2008, Sakradzija et al., 2016).  

Introducing p(m) instead of a bulk value 
<M> (bulk) reduces the on-off behaviour! 

We will: 

- average (filter) the input to the 
parameterisation 

- remove the limiters for the convective 
activity, mass flux values,… pass the 
decision to the stochastic scheme 
instead 

How to deal with the artificial noise?

total mass flux M [kg s-1 m-2]

2.5 km 
deterministic        
stochastic  

p(M)

p(<M>)

<M>

   
   

   
 

Deterministic p(<M>) versus stochastically 
sampled p(M).



Coupling of the stochastic scheme in ICON

1. The Tiedtke-Bechtold shallow convection closure provides the bulk mass flux M 

2. M is used to constrain the mass flux distribution p(m) 

3.  p(m) is randomly subsampled in each grid cell  

4. as a result of subsampling, we get the scale-aware p(M)

18

M

average the input

M bulk

p(m) =
k

�k
mk�1e�(

m
� )

k

use M, B, k=0.8  
to constrain p(m)

p(m)

m

stochastic  
sample

call the plume equations…

p(M)

M

scale-aware



The artificial noise is reduced by the stochastic version of convection
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stochasticdeterministic

no convection



Let’s compare the Tropical Atlantic case to observations 
Meteosat SEVIRI 

1. Meteosat SEVIRI (msevi) 

2. synthetic satellite radiances no convection (synsat) 
3. -||- deterministic version (conv) 

4. -||- stochastic version (stoch)
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The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) has the capacity to 
observe the Earth in 12 spectral channels.  

We use the channel at 10.8 µm where the signal comes from the land or ocean surfaces 
or the top-layers within clouds or a combination of the two.  

A radiative transfer scheme, the satellite forward operator, translates the simulation 
output into synthetic satellite radiances that can be directly compared to observations. 

F. Senf, D. Klocke and M. Brueck, Size-resolved evaluation of simulated deep tropical 
convection  2017, to be submitted soon 
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Synthetic satellite radiances
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Synthetic satellite radiances - regions
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Summary

A holistic approach to modelling of convection is needed in the gray zone. 
Challenges stem from all components: subgrid physics, dynamics and 

their coupling.   

Subgrid convection has to be parameterized using a stochastic  
scale-aware approach.  

Stochastic perturbations (physically constrained) have a power to correct 
model dynamics.  

A stochastic version of shallow convection reduces the noise by different 
truncation scales in physics and dynamics and by random sampling of 

p(m). 

A stochastic parameterization based on could ensembles is a promising 
method for convection-permitting models - it can address all three main 

challenges. 
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Why is B important?
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FIG. 11. Scaling of the average cloud base mass flux hmi based on the moist heat cycle (Eq. 11) for eight

LES cases showing a) the average mass flux of active cumulus clouds, b) the average mass flux of the total cloud

ensembles, and the right hand side of the Eq. 11 decomposed into c) Fin/(hhi�h) and d) h . Two time frames

are used for these figures, the frames starting after 6 and 10 hours of the simulation in the RICO based cases,

and after 8 and 10 hours in the ARM based cases.
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We look into the LES simulations to find evidence to support Eq. 11. We base our analysis on474

the active cloud group and we plot the average mass flux per active cloud hmi versus the right-475

hand side of the equation 11 (Fig. 11a). It turns out that Eq. 11 holds remarkably well for the eight476

tested LES cases of Table 1, which suggests that the average mass flux per cloud is determined by477

the moist heat cycle of the subcloud layer. The coefficient of determination of a linear regression478

model is r2 = 0.95. The slope is estimated to be equal to C1 = 0.13. The intercept parameter is479

nevertheless not equal to zero and results in an additional mass flux which we will denote by m0:480

hmi= m0 +C1
hFin

hhi�h
(12)

The estimated value in this study is m0 = 3 · 10�5 kg/s/m2. Depending on the test case and the481

Bowen ratio value, hmi can be 1.5 to 6.9 times larger than m0 (Fig. 11a).482

The scaling Eq. 11 is evaluated in Fig. 11a only for the active clouds, while we do not show the483

scaling for the ”passive” cloud group. This is because the buoyancy threshold used to separate the484

clouds into the two groups misinterpret some active clouds as passive. We can however show the485

scaling for the total cloud ensemble in Fig. 11b, which still holds.486

Equation 11 is decomposed into two parts to test the dependency of hmi of the active clouds on487

Fin
hhi�h

and h separately (Fig. 11c,d). It is clear from Fig. 11c that hmi does not scale with Fin
hhi�h

.488

The points are aligned vertically in three different groups associated with the three main values489

of the ratio Fin
hhi�h

, i.e. 0.05, 0.08, and 0.13. The increase in hmi in each of these three groups of490

points is due to changing values of B. Thus, hmi is controlled by B, while the different mean states491

of the subcloud layer can still result in the same value of hmi. It is not shown here explicitly, but492

hmi also does not scale uniquely with the total surface heat flux Fin.493

The average mass flux per cloud hmi is also not uniquely determined by h . h sets the slope of494

the three lines corresponding to the three different magnitudes of the ratio Fin
hhi�h

. Furthermore, if495
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9

what controls the 
distribution? - heat cycle 
and the Bowen ratio! 

Sakradzija, M., and C. Hohenegger,  

What determines the distribution of 

shallow convective mass flux through 

cloud base?  

J. Atmos. Sci., 2017



No need for a statistical distribution fitting under different meteorological 
conditions, different regions, warmer climate, etc…  
This also means that the parameterisation will not be “tunable".  

We have a physically constrained probability distribution of 

cloud base mass fluxes. 
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We look into the LES simulations to find evidence to support Eq. 11. We base our analysis on474

the active cloud group and we plot the average mass flux per active cloud hmi versus the right-475

hand side of the equation 11 (Fig. 11a). It turns out that Eq. 11 holds remarkably well for the eight476

tested LES cases of Table 1, which suggests that the average mass flux per cloud is determined by477

the moist heat cycle of the subcloud layer. The coefficient of determination of a linear regression478

model is r2 = 0.95. The slope is estimated to be equal to C1 = 0.13. The intercept parameter is479

nevertheless not equal to zero and results in an additional mass flux which we will denote by m0:480

hmi= m0 +C1
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(12)

The estimated value in this study is m0 = 3 · 10�5 kg/s/m2. Depending on the test case and the481

Bowen ratio value, hmi can be 1.5 to 6.9 times larger than m0 (Fig. 11a).482

The scaling Eq. 11 is evaluated in Fig. 11a only for the active clouds, while we do not show the483

scaling for the ”passive” cloud group. This is because the buoyancy threshold used to separate the484

clouds into the two groups misinterpret some active clouds as passive. We can however show the485

scaling for the total cloud ensemble in Fig. 11b, which still holds.486

Equation 11 is decomposed into two parts to test the dependency of hmi of the active clouds on487
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and h separately (Fig. 11c,d). It is clear from Fig. 11c that hmi does not scale with Fin
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.488

The points are aligned vertically in three different groups associated with the three main values489

of the ratio Fin
hhi�h

, i.e. 0.05, 0.08, and 0.13. The increase in hmi in each of these three groups of490

points is due to changing values of B. Thus, hmi is controlled by B, while the different mean states491

of the subcloud layer can still result in the same value of hmi. It is not shown here explicitly, but492

hmi also does not scale uniquely with the total surface heat flux Fin.493

The average mass flux per cloud hmi is also not uniquely determined by h . h sets the slope of494

the three lines corresponding to the three different magnitudes of the ratio Fin
hhi�h

. Furthermore, if495
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sampling distribution:                                             physical constraints: 



Theory of extreme events: 

Long-term correlations with a power-law decay of the 
autocorrelation function lead to Weibull distributions of return 

intervals between rare events.  

In that case the power-law exponent of the  
autocorrelation function,           can be assumed equal to the 
shape parameter of the Weibull distribution, k 
(e.g. Bunde et al. 2003; Blender et al. 2015). 

k - shape parameter  
of the Weibull distribution
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FIG. 12. Scatter plot of individual active cloud lifetimes and cloud base mass fluxes normalized by the

ensemble average values: a) R-base simulation and b) A-base simulation. Cloud samples are collected during

one hour starting from the 10th simulation hour. The red line is a fit of the function t/hti= (m/hmi)b using the

non-linear least squares. Plot is made using R (R Core Team 2015).
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FIG. 13. Approximately fitted mass flux distribution using a bimodal Weibull function. The distribution fit of

RICO is shown in the upper plot a), while the distribution fit of ARM is shown in the lower plot b). The range

for the shape parameter is quite wide to show low sensitivity of the distribution overall shape to this parameter,

while the fraction of active clouds in the ensemble is f = 5%.
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Spatial and temporal non-locality 

if a cloud does not 
fit into a single cell, 

it is allowed to 
spread over 

neighbouring cells

PDF

3km1km

C

clouds live longer than a single model 
time step

t

grid 
scale

current 
time  
step

m at a given time step, clouds 
within a single grid cell are 
at different stages of their 

lifecycle - memory
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1) Memory: diurnal cycle
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FIG. 6. Probability density function of the lifetime average cloud mass flux over the diurnal cycle of the

ARM-base case.
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no strong self-organization,  
but still a power-law-like shape!
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FIG. 7. Probability density function of the lifetime average cloud mass flux over the cases with different

diurnal cycle periods, based on the ARM case.
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Diurnal cycle of convection is not responsible for the overall distribution shape. 



20 Fluctuations in a quasi-stationary shallow cumulus cloud ensemble

(a) t= 6 h RICO-140 (b) RICO-GCSS

(c) t= 12 h (d)

(e) t= 18 h (f)

(g) t= 24 h (h)

1

Figure 2.1: Snapshots taken every 6 h during RICO simulations showing the cloud albedo: the higher cloud
droplet number density RICO case (RICO-140) vs. the standard RICO case (RICO-GCSS). These horizontal
cloud field snapshots are a courtesy of T. Heus. The RICO case simulations are performed by Heus and Seifert
(2013)

2) Self-organization
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FIG. 8. Probability density function of the lifetime average cloud mass flux in the RICO-base case, over

different stages of cloud organization.
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20 Fluctuations in a quasi-stationary shallow cumulus cloud ensemble

(a) t= 6 h RICO-140 (b) RICO-GCSS

(c) t= 12 h (d)

(e) t= 18 h (f)

(g) t= 24 h (h)

1

Figure 2.1: Snapshots taken every 6 h during RICO simulations showing the cloud albedo: the higher cloud
droplet number density RICO case (RICO-140) vs. the standard RICO case (RICO-GCSS). These horizontal
cloud field snapshots are a courtesy of T. Heus. The RICO case simulations are performed by Heus and Seifert
(2013)
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Different degrees of organization between RICO and ARM cannot explain the differences in  p(m)



3) Surface flux magnitude
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FIG. 6. Probability density function of the lifetime average cloud mass flux over the diurnal cycle of the

ARM-base case.
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• strength of the surface fluxes or  
• their ratio B 
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FIG. 9. Probability density function of the lifetime average cloud mass flux in the ARM-lowflx case compared

to the distribution in the ARM-base case.
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