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From small-scale turbulence to large-scale
convection: a unified scale-adaptive EDMF
parameterization

1. Unified approach to parameterization
« Eddy-Diffusivity/Mass-Flux model

2. Scale adaptive eddy-diffusivity approach




Turbulence, convection and cloud
parameterizations
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Artificial modularity leads to many problems: interfaces, transition

Goal: unified parameterization for boundary layer, convection and
macro/micro-physics




Turbulence and convective parameterizations

Reynolds-averaged conservation equations:
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LES model-informed parameterization development

LES models solve filtered version of conservation (e.g. Navier-Stokes) equations
High-resolutions (~ 1 - 100m) in all 3 dimensions
LES models resolve most of the essential turbulence/convection

Closures still needed for scales < 10m (but simpler than GCMs)

Bimodal joint pdf(w,q,) for
convective case
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Our EDMF approach

- Multiple convective plumes — Mass-Flux (MF) model, sum of uniform PDFs

- Surface driven updrafts
- Precipitation driven downdrafts
- Non convective environment - Eddy-Diffusivity (ED) model, joint normal
PDFs
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Shallow and deep version of EDMF

 Non-convective environment:

* TKE-based eddy-diffusivity approach
* Mass-flux

* Multiple surface-forced plumes, starting from surface PDF

* Stochastic entrainment rate

* Simple Kessler-type microphysics coupled to updraft dynamics
* Downdrafts driven by evaporation of rain

* Precipitation-driven cold pools

* Cold pools impact on updraft entrainment rates and surface PDF

Main advantages:
* Different types of convection within one grid-box
* No need for trigger functions and explicit convective closures

* Smooth transition between convective regimes (dry, shallow, deep)




Shallow convection case - BOMEX

BOMEX: Comparison of EDMF moist updraft properties against LES results
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Diurnal cycle of continental convection
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Climate and weather models often struggle to represent
transition between convective regimes




Unified EDMF, diurnal cycle of convection
over land

 New fully unified (PBL + shallow + deep convection) EDMF
« EDMF with cloud microphysics
e LBA diurnal cycle of precipitating convection
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Realistic transition with EDMF from shallow to deep convection



Scale adaptive ED closure for the dry
convective boundary layer: from LES to

climate scales

72 = /3d T /1d2

ha = (AxAyAz)H/3

hyg = f(kZ,T\/ tke)

K = [\ tke

Merging the 3D (LES-scale)
and 1D (GCM-scale) limits

LES scale length ( Ax~10 m)

GCM scale (Ax~100 km):




Dry convective boundary layer

WRF model from LES (Ax=50 m) to NWP/Climate (Ax=100 km)
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Gradual transition from resolved to
parameterized turbulence

Turbulent Kinetic Energy
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SGS vertical vs horizontal
turbulent fluxes:

Horizontal fluxes decrease
significantly from 1 to 100 km



SUMMARY

Unified EDMF parameterization can represent boundary layer
turbulence, shallow and deep convection (EDMF versions
implemented into ECMWF, NAVGEM, NCEP)

Multiple Plumes: New EDMF version using multiple plumes
represents well shallow and deep convection

Simple scale-adaptive approach leads to gradual transition from LES
(50 m) to climate model resolutions (100 km)

Key Challenges: Scale-adaptive plume models; Plume-plume
interaction; Prognostic plumes; Coupling to microphysics; Stable
boundary layer.




