

From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization

Kay Sušelj¹, Joao Teixeira¹ and Marcin Kurowski^{1,2}

 ¹ JET PROPULSION LABORATORY/CALIFORNIA INSTITUTE OF TECHNOLOGY
² JOINT INSTITUTE FOR REGIONAL EARTH SYSTEM SCIENCE AND ENGINEERING, UNIVERSITY OF CALIFORNIA

© 2017 CALIFORNIA INSTITUTE OF TECHNOLOGY. GOVERNMENT SPONSORSHIP ACKNOWLEDGED.

Shedding light on the greyzone ECMWF, Nov 14, 2017

From small-scale turbulence to large-scale convection: a unified scale-adaptive EDMF parameterization

1. Unified approach to parameterization

- Eddy-Diffusivity/Mass-Flux model
- 2. Scale adaptive eddy-diffusivity approach

Turbulence, convection and cloud parameterizations

Artificial modularity leads to many problems: interfaces, transition

Goal: unified parameterization for boundary layer, convection and macro/micro-physics

Turbulence and convective parameterizations

Reynolds-averaged conservation equations:

$$\frac{\partial \overline{\varphi}}{\partial t} + \frac{\partial}{\partial x} \left(\overline{u} \overline{\varphi} \right) + \frac{\partial}{\partial y} \left(\overline{v} \overline{\varphi} \right) + \frac{\partial}{\partial z} \left(\overline{w} \overline{\varphi} \right) = -\frac{\partial}{\partial z} \left(\overline{w' \varphi'} \right) + \overline{S},$$

Eddy-Diffusivity/Mass-Flux (EDMF)

LES model-informed parameterization development

- LES models solve filtered version of conservation (e.g. Navier-Stokes) equations
- High-resolutions (~ 1 100m) in all 3 dimensions
- LES models resolve most of the essential turbulence/convection
- Closures still needed for scales < 10m (but simpler than GCMs)

Courtesy of G. Matheou

Our EDMF approach

- Multiple convective plumes Mass-Flux (MF) model, sum of uniform PDFs
 - Surface driven updrafts
 - Precipitation driven downdrafts
- Non convective environment Eddy-Diffusivity (ED) model, joint normal PDFs

Shallow and deep version of EDMF

- Non-convective environment:
 - TKE-based eddy-diffusivity approach
- Mass-flux
 - Multiple surface-forced plumes, starting from surface PDF
 - Stochastic entrainment rate
 - Simple Kessler-type microphysics coupled to updraft dynamics
 - Downdrafts driven by evaporation of rain
 - Precipitation-driven cold pools
 - Cold pools impact on updraft entrainment rates and surface PDF

Main advantages:

- Different types of convection within one grid-box
- No need for trigger functions and explicit convective closures
- Smooth transition between convective regimes (dry, shallow, deep)

Shallow convection case - BOMEX

BOMEX: Comparison of EDMF moist updraft properties against LES results

Low sensitivity of multiple-plume EDMF to surface updraft area $_{1000 \text{ m}}$

Diurnal cycle of continental convection

Climate and weather models often struggle to represent transition between convective regimes

Unified EDMF, diurnal cycle of convection over land

- New fully unified (PBL + shallow + deep convection) EDMF
- EDMF with cloud microphysics
- LBA diurnal cycle of precipitating convection

Realistic transition with EDMF from shallow to deep convection

Scale adaptive ED closure for the dry convective boundary layer: from LES to climate scales

$$\overline{\varphi' u_i'} = -K \frac{\partial \overline{\varphi}}{\partial x_i}$$

where

 $K = I\sqrt{tke}$

$$I^{-2} = I_{3d}^{-2} + I_{1d}^{-2}$$

Merging the 3D (LES-scale) and 1D (GCM-scale) limits

$$I_{3d} = (\Delta x \Delta y \Delta z)^{1/3}$$

LES scale length ($\Delta x \sim 10 \text{ m}$)

$$I_{1d} = f(kz, au\sqrt{tke})$$

GCM scale ($\Delta x \sim 100$ km):

Dry convective boundary layer

WRF model from LES (Δx =50 m) to NWP/Climate (Δx =100 km)

6 cases:

- 3 different stratifications
- 2 different surface heat flux values

Gradual transition from resolved to parameterized turbulence

Partitioning between resolved and SGS TKE

SGS vertical vs horizontal turbulent fluxes: Horizontal fluxes decrease significantly from 1 to 100 km

SUMMARY

Unified EDMF parameterization can represent boundary layer turbulence, shallow and deep convection (EDMF versions implemented into ECMWF, NAVGEM, NCEP)

 Multiple Plumes: New EDMF version using multiple plumes represents well shallow and deep convection

Simple scale-adaptive approach leads to gradual transition from LES (50 m) to climate model resolutions (100 km)

 Key Challenges: Scale-adaptive plume models; Plume-plume interaction; Prognostic plumes; Coupling to microphysics; Stable boundary layer.