

Various aspects of what we can and would like to represent with ECMWF moist physics:

DYMECS project; Stein T, R. Hogan et al, BAMS 2015: "believe 1 km resolution enough, all remaining issues go away by further cranking up resolution => 200 m best but still sensitivity to mixing length

GEWEX convection permitting climate workshop, Prein Rasmussen, Stephens 2016: so far focus on precip extremes, uncertainties of CPMs could not be properly assessed, main benefits: reducing uncertainty in convective storms, gravity waves, terrain;, better representation of hydrolog. Processes (snowpack, orographic precip)

Yano et al. BAMS 2017/18: Is increase in resolution leading to better forecasts? Can't say yet but probabilistic approach and turbulence research with robust numerics needed

Peter Bechtold and colleagues

Large-scale waves and diurnal cycle

Updraught glaciation/melting level revisions, comparison with heating rates from DYNAMO

J.-E Kim et al. 2017, JAS

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Tropical large-scale waves in observations and short-range forecasts: Microwave brightness temperatures - SAPHIR (sensitive to ice)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Wavenumber Frequency Spectra OLR and Precipitation

Dias J. et al. comparison Obs GFS and IFS, 2017/18 MWR in preparation

AQUA Planet with cst SST=30C, sun over equator, Cy43r3, Tl255: CP & LSP

CECMWF

AQUA Planet with cst SST=30C, sun over equator: Mean Precipitation

Base dx=80 km

Total Precipitation gt4a Feb 2001-2002 nmon=12 nens=4 Mean: 3.79 45°W 0°E 45°E 90°E 135°E 135°W 90°W 60°N 60° N 30°N 30°N 0°N 0°N 30°S 30°S 60°S 60°S 135°W 90°V 135°8

Small Planet: R/10 Total Precipitation gomx Feb 2001-2002 nmon=12 nens=2 Mean: 4.0 135^{-W} 90^{-W} 45^{-W} 0^{-E} 45^{-E} 90^{-E} 135^{-E} 135^{-W} 90^{-W} 45^{-W} 0^{-E} 45^{-E} 90^{-E} 135^{-E}

Small Planet: R/8 Cor*8

Small Planet: R/8 Cor*8 No Deep

No deep

AQUA Planet with cst SST=30C, sun over equator: Precip spectra

Stratospheric H2O and convection JA2013 100 hPa

Stratospheric H2O and convection JA2013 100 hPa

Issues in upper tropo/lower stratosphere: gravity wave breaking, diffusion, resolution?

Stratospheric group: I. Polichtchouk, R. Hogan, S. Malardel, N. Wedi, M. Diamantakis, I. Sandu, A. Beljaars, T. Stockdale, M. Rennie, E. Holm, L. Isaksen, F Vana, B Ingleby, A. Simmons, A. Bozzo, J. Flemming+ Satellite section

Very recent: progress shown by M. Diamantakis and F. Vana in using higherorder SL DP interpolation for wind, T. Stockdale in using 200 m vertical resolution

experimental version with TKE above 500 hPa with E. Bazile

K-diff short tails above lapse rate tropopause Cy45r1

Does a Cumulus ensemble (based on entrainment) improve on biases at tropopause and trade wind inversion?

$$\varepsilon = \varepsilon_0 (1+r); \quad r \in [-0.15, 0.15]$$

"full=trigger+ascent+closure" by calling whole convection n-times and averaging

1-Dec-2016 to 9-Dec-2016 from 0 to 9 samples. Cross-hatching indicates 95% confidence. Verified against 0001. T+12 T+24 0.15 Pressure, hPa sure, hP; 100 100 400 400 700 ň 700 1000 100 -60 -30 0 30 60 -60 -30 30 60 -90 90 -90 0 90 Latitude Latitude 0.10 T+48 T+72 Pressure, hPa ssure, hP 100 100 400 400 Pre 700 0.05 700 sed by RMS error of co 1000 1000 -60 -30 -60 -30 0 30 60 90 -90 0 30 60 90 -90 Latitude Latitude T+96 T+120 Pressure, hPa sure, hP. -0.00 E 100 400 400 Difference in RMS error r 700 700 1000 1000 -60 -30 30 -90 -60 -30 0 30 -90 0 60 90 60 90 Latitude Latitude T+144 T+168 ssure, hPa ssure, hP 400 40 Pre 70 700 1000 -0.10 1000 -90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90 Latitude Latitude

Change in error in T (ENS5-CTL)

CECMWF

Systematic wind and OLR/Precip errors in coupled simulations

Ensemble and perturbed physics: Perturbed parameter distributions

Ollinaho et al. 2017, QJRMS Leutbecher et al. 2017, QJRMS Ensemble is successful cause spatialtemporal varying perturbation pattern

Resolution scaling for deep convection

Resolution scaling of Mass Flux

$$\overline{\omega'\Phi'} = \overline{\omega}\overline{\Phi} - \overline{\omega}\overline{\Phi}$$
$$= \sigma (1 - \sigma) (\overline{\omega}^c - \overline{\omega}^e) (\overline{\Phi}^c - \overline{\Phi}^e)$$
$$\cong \sigma \overline{\omega}^c (\overline{\Phi}^c - \overline{\Phi}) = -\frac{1}{g} M^c (\overline{\Phi}^c - \overline{\Phi}) \quad f(\Delta x)$$

Developed in collaboration with Deutsche Wetterdienst and ICON model

Major bias in night-time convection over land and uncertainty (Sahel)

SSMIS channel 6 Obs and First Guess JJA2016

courtesy A. Geer

TCo1999

TCo1999 no deep

TCo1279 3h Precip and W 500 hPa (+5 cm/s -3 cm/s)

Convection-Dynamics: Mass flux (A)dvection to be done by explicit dynamics

with Sylvie Malardel, earlier work by N. Wedi; Kuell, A. Gassmann and Bott 2007

$$\begin{aligned} \frac{\partial \bar{\psi}}{\partial t} \Big|_{conv} &= g \frac{\partial}{\partial p} \Big[M^{u} (\psi^{u} - \bar{\psi}) + M^{d} (\psi^{d} - \bar{\psi}) \Big] + S; \quad \overline{M} = M^{u} + M^{d} + M^{env} = 0 \\ \frac{\partial \bar{\psi}}{\partial t} \Big|_{conv} &= g \frac{\partial}{\partial p} \Big[M^{u} \psi^{u} + M^{d} \psi^{d} \Big] - g \frac{\partial (M^{u} + M^{d})}{\partial p} \bar{\psi} + S + A \\ A &= -g (M^{u} + M^{d}) \frac{\partial \bar{\psi}}{\partial p} = \omega \frac{\partial \bar{\psi}}{\partial p}; \quad Div[s^{-1}] = -g \frac{\Delta M}{\Delta p} \qquad \Delta p = p_{k+1/2} - p_{k-1/2} \end{aligned}$$

Difficulty: (1) Term A computed differently in Physics and SL dynamics: non-conservation (abandoning flux form, different time levels) (2) Coupling with microphysics

Change in T Budgets, how much of total is A doing ?

Sylvie Malardel

CECMWF

Mass flux subsidence in Dynamics: preliminary impact on climate

Subgrid vertical transport, mixing and condensation

Towards a more consistent and simple dual (dry+moist) mass flux + K-turb diffusion + cloud treatment

- "Diffusion scheme" does K-diffusion in moist conserved variables +dry mass flux
- The convective boundary-layer height Zi and/or cloud base Zb are determined by the same test parcel as in the shallow convection
- Shallow and deep convection provide the moist convective transport (also in Sc !), the condensate detrainment is the main source term for the cloud scheme
- Clouds are computed in the prognostic cloud scheme (for condensation RH>80%=uniform humidity distribution in clear sky) using convective detrainment and moisture tendency from diffusive mixing
- Additional K-mixing in Sc (radiative cooling) and in 'elevated' cloud and shear layers

Mixed layer ·

with I. Sandu, M. Ahlgrimm., P. Lopez., R. Forbes

based on earlier implementations by M. Koehler, A. Beljaars, \mathbf{Z}_{i} R. Neggers Zi=Zcb Z_{cb} Μ Μ Κ K moist dry BL Stratocumulus Shallow cumulus Deep cumulus

Evaluating forecasts against observations

One of the flights during CSET

CSET, the Cloud System Evolution in the Trades

 July/August 2015 (University of Washington and Miami)

NARVAL (Next-generation Aircraft Remote sensing for Validation Studies) – MPI-M (Dec 2013/Jan 2014)

Is convection able to handle top entrainment and transitions? Coupling with cloud scheme (evaporation)

Difficulties: Balance of processes, numerics of inversions

See also Lenderink and Holtslag (2000), Lock (2006), Beljaars (2016)

Summary of issues we want/need to improve on

- Propagation/organisation of mesoscale convective systems (especially during night)
- Lower Stratosphere: cold bias and downward propagation of QBO signal (Kelvin wave filtering), convective overshoots
- Microphysics for microwave data assimilation
- Boundary-layer cloud formulation
- Biases in West Pacifc Precip/wind in relation with ocean coupling

Some pathways

- Ensemble formulation absolutely needed, SPP; additional ensemble formulation in convection only brings potential limited benefit
- work on diffusion/numerics in stratosphere (free shear layers)
- Graupel (convection) might be needed for data assimilation
- Representing oceanic Cu/Sc with mass flux source or diffusion(K, TKE etc)+statistical cloud scheme

Coupling (experimental) diffusion code and TKE: collaboration with Meteo France (E.

Wintery lake convection -snow

Revisiting the convective momentum transport: shallow convection

RICO: LES

IFS: 16-28.12 2008 RICO domain

Schlemmer et al. 2017 JAMES

Revisiting the convective momentum transport: shallow convection

LES (black) IFS IFS formula with LES data

Kelvin waves: vertical structure

At z~10 km, warm anomaly and convective heating are in phase, leading to :

- the conversion of potential in kinetic energy = $\alpha\omega$
- The generation of potential energy = NQ
- For inertia gravity waves, horizontal phase and group speed have same sign, but opposite sign for vertical propagation

CECMWF

Improving the SW radiation biases:

Focus: Storm tracks and Sc regions not reflective enough, trades and transition too reflective

Cy43r1

Adding 0--38C mixed phase, snow, rain detrain, liquid phase only for shallow

for Cy45r1 merged physics: cloud+conv

34

Assessing the SH biases through microwave first-guess departures

Total FG departures

-2.5

courtesy K. Lonitz

FG departure changes by contribution

Assessing the SW radiation biases through complementary Satellite and ground-based data

All-sky/grid-box mean LWP

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Forecasting Lightning

11 16 21 26 1 6 11 16 21 26 31

In the model, total (CG+IC) lightning flash densities are diagnosed from CAPE, convective hydrometeor contents and convective cloud base height.

