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Abstract 

Recent increases in the IFS model resolution have improved its ability to produce realistic forecasts 

of tropical cyclones but they also present new challenges to the data assimilation system. This is 

because standard assumptions made in 4D-Var are called into question when the data assimilation 

system has to deal with observations sampling the extreme conditions, both actual and forecasted, 

around a tropical cyclone centre. We present here examples of these problems as encountered in the 

operational ECMWF analysis and the solutions adopted to correct them. These include introducing an 

adaptive quality control algorithm for dropsonde observations, the reduction of the resolution of the 

EDA-derived background errors used in 4D-Var together with a non-homogeneous noise filtering 

technique. These investigations have also highlighted a number of promising avenues of further 

research, which have the potential to improve both the initialisation of tropical cyclones and the global 

accuracy of the ECMWF analyses and forecasts.   

 

 

1 Introduction  

Tropical cyclones (TC) are some of the most damaging weather events, even today causing significant 

number of casualties and widespread damage to property (Doocy et al., 2013) through a combination of 

destructive winds, torrential rains, flooding and storm surges. The ability to provide detailed, timely and 

accurate numerical weather prediction (NWP) guidance to the operational forecasting centres tasked 

with issuing the relevant alerts and warnings is thus a fundamental aspect of the mitigation effort. 
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During the past 25 years, the skill of tropical cyclone forecasts has steadily increased at ECMWF and 

in all other global NWP centres, more markedly for cyclone tracks (Yamaguchi et al., 2017). These 

advances have been the combined result of developments in the prognostic model, increased resolution, 

better observational coverage and advances in data assimilation methods. This combination of factors 

has led to a general improvement of all aspects of the forecast, and the improvements seen in TC 

forecasts can be seen as a consequence of this wider trend. It is important to note in this context that, 

differently from other global NWP Centres (Kleist, 2011; Heming, 2016), ECMWF does not use pseudo-

observations of the TC central pressure or the TC position (sometimes known as TC Vitals: Trahan and 

Sparling, 2012) either directly or through a dynamical relocation of the vortex.   

The recent upgrades in horizontal resolution of the ECMWF atmospheric model (currently approx. 9 

km grid-spacing for the deterministic high resolution atmospheric model (HRES); 18 km for the 

Ensemble of Data Assimilation, EDA, and the ensemble forecasts, ENS) have resulted in an increased 

realism of the simulated structure and intensity of tropical cyclones (Holm et al, 2015; Mogensen et al., 

2017). While this implies that background forecasts of tropical cyclones tend to show more realistic 

structures and depth, relatively small discrepancies between the background and actual TC location can 

produce very large observation-background departures (O-B). These large departures, in turn, present 

the analysis algorithm with difficult choices in terms of observation quality control and, as discussed in 

the following, they test the limits of applicability of incremental 4D-Var. We note that analogous 

problems have been encountered and discussed in the EnKF framework (Chen and Snyder, 2007; Torn 

and Hakim, 2009; Torn, 2010), where it has been shown, for example, that assimilating vortex position 

information in cases where expected vs actual positions differed more than the vortex size can lead to 

negative effects on the analysis quality. 

An example of these problems is shown in Fig. 1. In the left panel the temporal evolution of the analysed 

minimum mean sea level pressure (min MSLP) of the operational EDA control (unperturbed) member 

of the ECMWF Integrated Forecasting System (IFS) Cycle 41r2 is shown (continuous line), while the 

estimated min MSLP from the official advisories is shown as red dots. The right panel shows the 

temperature analysis increments of EDA member 14 valid on 2015-10-02 at 09 UTC, at the end of the 

first outer loop iteration (unsurprisingly, the minimization failed to converge due to numerical 

instabilities in the second outer loop iteration).   

 

Figure 1. Left panel: time evolution of the analysed minimum mean sea level pressure for the EDA 

control member (continuous line) and of the estimated minimum sea level pressure of Hurricane Joaquin 
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according to official advisories (units: hPa). Right panel: temperature analysis increments at model 

level 120 (approx. 900 hPa) for EDA member 14, valid on 2015-10-02 at 09 UTC (red positive, green-

blue negative; units: Kelvin).      

The difficulties encountered by the analysis algorithm were found to be connected to the very large O-

B departures of the dropsonde winds entering the assimilation cycle (Fig. 2, left panel: wind vector 

observation departures with respect to the background forecast for the 2015-10-02 00UTC analysis; 

right panel: wind vector observation departures with respect to the analysed wind field). It is apparent 

that dropsonde wind observations in the vicinity of the centre of the tropical cyclone can present 

departures well in excess of 50 m/s with respect to the background forecast (In this specific case 

observation-background departures of up to 70 m/s were registered). A sensitivity experiment 

blacklisting dropsonde wind observations prevented the numerical failures in the variational analysis 

that occurred for some of the EDA members and provided a more regular time evolution of the analysed 

cyclone. However, the depth and strength of the cyclone were then consistently under-estimated (Fig. 

3). 

 

 

Figure 2. Left panel: Observation-background departures from the background forecast of dropsonde 

wind vectors active in the 2015-10-02 00UTC analysis in the 600-1013 hPa atmospheric layer (coloured 

dots, see legend; units: m/s); black triangle denote estimated position of tropical cyclone Joaquin at 

nominal analysis time); MSLP background forecast valid at nominal analysis time (black isolines, 5hPa 

intervals). Right panel: As left panel but for the corresponding analysed fields.      
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Figure 3. Time evolution of the analysed minimum mean sea level pressure for the EDA control member 

(red continuous line); EDA control member with blacklisted dropsonde wind observations (green 

continuous line); and of the estimated minimum sea level pressure of Hurricane Joaquin according to 

official advisories (units: hPa). 

 

A distinct problem in the initialization of tropical cyclones was also highlighted in conjunction with the 

pre-operational tests leading to the horizontal resolution upgrade of the IFS in 2016 (from approx. 18 

km grid spacing to approx. 9 km). A typical example is shown in Figure 4 where the mean sea level 

pressure field from the pre-operational analysis valid on 2015-10-23, 12UTC (Cycle 41r1; TL1279 

resolution) is presented in the left panel and the corresponding analysis for the higher resolution 

experimental cycle 41r2 (TCo1279 resolution) is presented in the right panel. The red triangle in the 

plots denotes the estimated position of Hurricane Patricia, whose minimum mean sea level (MSL) 

pressure was also estimated by the official advisories to have reached 880 hPa at the time of the analysis. 

It is evident that both analyses are very far from producing a realistic description of the intensity of this 

tropical cyclone. In addition, the higher resolution analysis produces a “double-eyed” configuration of 

the cyclone, with two separate MSL minima around the reported position. This “multi-eyed” type of 

behaviour more often occurred for tropical cyclones that were poorly constrained by observations, either 

conventional observations (SHIPS, BUOYS, Dropsondes) and/or scatterometer observations.          
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Figure 4. Left panel: Analysed mean sea level pressure for the operational IFS cycle (41r1) valid on 

2015-10-23, 12 UTC. Right panel: As left panel, for IFS cycle 41r2. The red triangle denotes the 

estimated position of Hurricane Patricia at the analysis time.  

In this paper, we discuss in more detail the behaviour of the ECMWF assimilation system with respect 

to tropical cyclone initialization in light of the issues described above and the solutions adopted to 

improve the accuracy and robustness of the operational analysis. In Sect. 2 we examine some of the 

algorithmic constraints which can affect the behaviour of the ECMWF data assimilation system in the 

presence of large discrepancies between observations and model background forecast. In Sect. 3 some 

aspects of the current use and deployment practices of dropsondes launched in the vicinity of tropical 

cyclones are reviewed and a representative example is analysed in detail. In Sect. 4 we discuss the 

changes introduced in a recent IFS cycle (Cycle 43r3, operational from July 2017) to deal with some of 

the problems highlighted in connection with the use of dropsonde observations. The impact of these 

changes on analysis performance is illustrated in terms of representative test cases and more 

comprehensive performance statistics. In Sect. 5 we proceed to discuss the issues connected with the 

appearance of “multi-eyed” tropical cyclones in the ECMWF analyses and what has been done to tackle 

this problem in recent IFS cycles. Measuring progress in tropical cyclone initialisation and prediction 

requires accurate verification data, which is still difficult to obtain, as direct observations of the relevant 

TC quantities are infrequent. In Sect. 6 we discuss some of the issues connected with TC verification 

and some new recent diagnostic tools introduced at ECMWF. Producing more accurate and reliable 

analyses and forecasts of Tropical Cyclones will still require efforts in terms of data assimilation 

methodology, improved observation usage and model development: the more interesting lines of current 

and near future research, from the ECMWF perspective, are discussed in Sect. 7. Conclusions are drawn 

in Sect. 8.  

 

2 Algorithmic Aspects  

To understand the issues facing the 4D-Var analysis in the presence of large O-B departures let us 

consider the standard strong constraint 4D-Var cost function: 

𝐽(𝐱0) =
1

2
(𝐱0 − 𝐱𝑏)T𝐏𝑏

−1(𝐱0 − 𝐱𝑏) +
1

2
∑(𝐲𝑘 − 𝐺𝑘(𝐱0))

T
𝐑𝑘

−1(𝐲𝑘 − 𝐺𝑘(𝐱0))

𝐾

𝑘=0

            (1) 

Where 𝐱0 is the control vector at the start of the assimilation window; 𝐱𝑏and 𝐏𝑏  are the background and 

its expected error covariance matrix; 𝐲𝑘 and 𝐑𝑘  are the set of observations presented to the analysis in 

the k sub-window and their expected error covariances; and 𝐺𝑘 is a generalised observation operator that 

produces the model equivalents of 𝐲𝑘 by integrating the model from t0 to tk and then applying the 

standard observation operator 𝐻𝑘 to the propagated fields, i.e.: 

𝐺𝑘 = 𝐻𝑘°𝑀𝑡0→𝑡𝑘
                 (2) 

Incremental 4D-Var (Courtier et al., 1994) approximates the minimization of the non-linear cost 

function (1) as a sequence of minimizations of linear, quadratic cost functions defined in terms of 

perturbations around a sequence of progressively more accurate trajectories (i.e., non-linear model 

integrations). The cost function linearised around a trajectory 𝐱𝑡 can be expressed as an exact quadratic 

problem in terms of the initial time increment δ𝐱0:  
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𝐽(δ𝐱0) =
1

2
(𝛿𝐱0 + 𝐱0

𝑡 − 𝐱𝑏)T𝐏𝑏
−1(𝛿𝐱0 + 𝐱0

𝑡 − 𝐱𝑏)

+
1

2
∑(𝐝𝑘 − 𝐆𝑘(δ𝐱0))

T
𝐑𝑘

−1(𝐝𝑘 − 𝐆𝑘(δ𝐱0))

𝐾

𝑘=0

           (3) 

Where 𝐝𝑘 =  𝐲𝑘 − 𝐺𝑘(𝐱0
𝑡 ) are the observation departures around the latest model trajectory and 𝐆𝑘 =

𝐇𝑘𝐌𝑡0→𝑡𝑘
 is the linearisation of the generalised observation operator. 

In the observation part of the cost function, the so-called “tangent linear approximation” has been made 

in going from (1) to (3): 

𝐲𝑘 − 𝐺𝑘(𝐱0) = 𝐲𝑘 − 𝐺𝑘(𝐱0
𝑡 + δ𝐱0)

= 𝐲𝑘 − 𝐺𝑘(𝐱0
𝑡 ) − 𝐆𝑘(δ𝐱0) −

1

2
 (δ𝐱0)T (

∂𝐆𝑘

∂𝐱
)

𝐱𝑡
(δ𝐱0) − 𝑂(‖δ𝐱0‖3) 

≈ 𝐲𝑘 − 𝐺𝑘(𝐱0
𝑡 ) − 𝐆𝑘(δ𝐱0)                                         (4) 

In the Taylor expansion in Eq. (4), terms of O(‖δ𝐱0‖2) and higher are neglected. This is justified if 

either the dependence of the linearization of 𝐺𝑘   (i.e., 𝐆𝑘 = 𝐇𝑘𝐌𝑡0→𝑡𝑘
) to the reference trajectory is 

negligible or the increments δ𝐱0 are in some sense small. Concerning the first aspect, experience has 

shown that there is a clear sensitivity of both the linearised observation operator and the linearised model 

to the linearisation state (e.g., Bauer et al., 2010; Janisková, M., and P. Lopez, 2013). 

The size of the increments δ𝐱0 can be estimated from linear Kalman Filter theory as: 

δ𝐱0 ≈ 𝐏𝑏𝐇𝑇(𝐇𝐏𝑏𝐇𝑇 + 𝐑)−1𝐝𝑘                                (5) 

The size of the increments is thus, to a first approximation, a linear function of the observation 

departures. Larger observation departures will thus make the tangent linear hypothesis progressively 

less valid. Note how larger assumed background errors will also produce bigger increments, especially 

when they are of comparable magnitude to assumed observation errors. In this regard, the introduction 

of the Ensemble of Data Assimilations (EDA, Isaksen et al., 2010) in the ECMWF analysis algorithm 

to estimate flow-dependent background errors, has led to a sizable increase in the magnitude of estimated 

background errors in the vicinity of active weather systems in general and tropical cyclones in particular 

(e.g., Bonavita et al., 2012; Holm et al., 2015). On the other hand, we see from Eq. (5) that bigger 

expected observation errors tend to reduce the size of the increments during the variational minimization 

process and thus keep the system within the bounds of validity of the tangent linear assumption.   

Large O-B departures can also can also test the resilience of the algorithms used in the Quality Control 

(QC) of the observations. The observation QC algorithms used in the ECMWF data assimilation cycle 

are of two types.  

First, a background QC check is applied to the magnitude of the O-B departures: 

(y𝑘 − 𝐺𝑘(𝐱0
𝑏))

2
< 𝑍𝑅𝐸𝐽 ∗ (𝜎𝑜

2 + 𝜎𝑏
2)

2
                     (6) 

where 𝜎𝑜
2 is assumed observation error variance and 𝜎𝑏

2 is the background error variance interpolated to 

the observation location. ZREJ is a pre-specified rejection limit that is typically in the 9-25 range. This 

means that observations are completely rejected and play no further role in the assimilation if the 

magnitude of their departures are between 3 to 5 times the magnitude of their expected total errors, 

assuming uncorrelated observation and background errors. In the case of dropsonde observations the 
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rejection limit is further relaxed to 100, so that departures need to exceed 10 times their expected values 

to be rejected. Taking into account that background errors estimated from the EDA background standard 

deviation can easily exceed 6-7 m/s for each wind component in the vicinity of tropical cyclones, it is 

clear that this quality control step will allow most of the dropsonde observations into the analysis. It is 

interesting to note that the use of more realistic values of background errors near tropical cyclones affects 

the analysis in two ways: a) it increases the magnitude of the 4D-Var increments and b) it allows 

observation with larger O-B departures into the analysis. These effects together tend to produce even 

larger increments in the analysis. 

An additional QC step is performed inside the 4D-Var analysis, and it is thus commonly referred to as 

variational QC (VarQC). In the ECMWF implementation (Tavolato and Isaksen, 2015), the standard 

Gaussian assumption for the statistical distribution of the observation errors is changed to a Huber norm 

distribution (Huber, 1964), which is Gaussian in the centre but has exponential tails beyond some 

predefined transition points. The use of the Huber norm allows 4D-Var to perform a “soft” QC on 

observations with large departures, by effectively reducing their impact on the final analysis, but not 

discarding them completely. We note however that in its current ECMWF implementation the Huber 

norm VarQC is not active during the first outer loop minimization. As the first minimization is the one 

that produces the biggest increments in the analysis, marginal observations with large O-B departures 

can still have a large effect on the final analysis even when the VarQC has effectively rejected them in 

successive outer loops. It is also interesting to note that the implementation of the Huber norm requires 

the identification of the transition points (left and right) where the distribution transforms from Gaussian 

to exponential. As shown in Tavolato and Isaksen, 2015, this requires a careful statistical analysis of 

large samples of O-B departures for the specified observation type. It is clearly difficult to construct 

representative samples for infrequent observations such as dropsondes and comparison with radiosonde 

O-B statistics is complicated by the sampling of dropsondes (usually near TCs).      

  

3  The role of dropsondes in TC analysis  

Most TC dropsondes are provided by the USA for storms approaching North America or Hawaii.  

Several different types of aircraft are used to launch the dropsondes.  The US Air Force uses WC-130 

Hercules aircraft at low or medium altitudes up to 3 km (10000 feet, see 

http://www.hurricanehunters.com/plane.html), NOAA uses Gulfstream-IV (high altitude), and P-3 (low 

or medium altitude) aircraft (Aberson et al, 2010; these aircraft carry various additional instruments but 

the data are not currently available over the GTS7).  In recent years, NOAA and NASA have also used 

the autonomous Global Hawk aircraft (at altitudes up to 22 km, 

https://www.esrl.noaa.gov/psd/psd2/coastal/satres/ghawk_dropsonde.html). Several different 

flight/release patterns are possible, but from an assimilation point of view, the main distinction is 

between eyewall/eye sampling (which is mainly from the aircraft flying at about 700 hPa) and more 

general sampling of the storm environment.  Even with relatively high resolution global NWP systems 

eyewall observations pose severe problems of representativeness errors - discussed further below.  In 

the Asia-Pacific region, there was a 2008 field experiment (Weissmann et al, 2011).  Taiwan operates 

the ongoing DOTSTAR program (http://typhoon.as.ntu.edu.tw/DOTSTAR/en/), and apparently, Hong 

Kong has TC dropsonde capability, but there are relatively few reports from this region.     

In the current ECMWF IFS dropsonde observations are treated similarly to radiosonde observations, 

with the same default expected observation error standard deviations (based on Ingleby, 2017, there has 
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been a change to reduce the specified temperature and humidity errors for certain radiosonde types, this 

does not affect the values specified for dropsondes). In recent years, a growing number of radiosonde 

reports are becoming available in binary BUFR format (Ingleby et al., 2016), which allows the 

transmission of the exact position of the sonde during the ascent. Being able to account for radiosonde 

drift in the horizontal has been shown to be beneficial to the O-B statistics (Ingleby and Edwards, 2015). 

This is still not possible for dropsonde observations, although it is hoped that high-resolution reports 

with positions at each level will become available over the Global Telecommunication System (GTS) 

in 2018. 

The current practice of treating dropsonde profiles as vertical and instantaneous is particularly 

problematic for eyewall reports. Different drop patterns are illustrated in Fig. 5, where the O-B 

departures of dropsonde wind vectors are shown for a 12-hour assimilation window during the lifetime 

of hurricane Sandy (left panel) and of hurricane Matthew (right panel). While both hurricanes’ 

environment is sampled by a long-range, approx. circular deployment of dropsondes, the hurricane 

structure itself is sampled very differently. In Sandy’s case, a distribution of dropsondes on an irregular 

grid around the hurricane core is visible; in the more recent Matthew case the dropsondes are clustered 

together near the hurricane’s core.  The differences are partly because Sandy had a less well-defined 

eyewall and partly because of the altitude of the reconnaissance flights (Aberson, pers. comm., 2017).   

   

Figure 5. Left panel: O-B departures of dropsonde wind vector observations active in the 2012-10-26 

00UTC analysis in the 600-1013 hPa atmospheric layer (coloured dots, see legend; units: m/s; black 

triangle denote estimated position of hurricane Sandy at nominal analysis time); MSLP background 

forecast valid at nominal analysis time (black isolines, 5hPa intervals). Right panel: As left panel for 

the 2016-10-04 00UTC analysis of hurricane Matthew.      

To see in more detail the possible consequences of eyewall reports on the TC initialization, let us 

consider the case of hurricane Matthew in more detail. Hurricane Matthew (Fig. 6, left panel) was a 

major category 5 tropical cyclone in the 2016 Atlantic hurricane season, which brought devastation to 

large swaths of the Caribbean islands and the south eastern USA (Stewart, 2017). The ECMWF 

operational analysis valid at 12 UTC on 2016-10-01 assimilated observations from five dropsondes 

deployed in a 1-hour period around the nominal analysis time near the TC core (Fig. 6, right panel). 

Looking at the observed wind components during the dropsonde descent (Fig. 7), it is apparent that some 

of the dropsondes were caught in the strong axisymmetric flow around the TC core. This effect is evident 

for dropsonde 3 whose observed wind observations are shown in the left panel of Figure 8: during its 
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descent from approx. 700 hPa down to the surface, the sonde is swept around the TC core for about a 

quarter of its angular circumference. This is consistent with the initial distance of the dropsonde to the 

reported TC position (approx. 12 km), typical fall speeds of 12-15 m/s and reported horizontal wind 

speeds in the 50 to 67 m/s range.         

 

 

Figure 6. Left panel: Image of Hurricane Matthew derived from the MODIS sensor L1B radiances on 

board the NASA Terra sun-synchronous satellite on 2016-10-01, 15 UTC (credits: https://modis-

atmos.gsfc.nasa.gov/index.html). Right panel: Estimated position of Hurricane Matthew on 2016-10-

01, 12 UTC (black triangle) and launch position of dropsondes near Hurricane Matthew core from 

11.53 UTC to 12.49 UTC on 2016-10-01 (coloured circles).The estimated position of Hurricane 

Matthew and the launch position of dropsonde 1 (blue circle) overlap.      

 

 

Figure 7. Left panel: observed zonal wind components for dropsonde observations near the core of 

hurricane Matthew from 11.53 UTC to 12.49 UTC on 2016-10-01 (colour code as in Fig. 6, right panel; 

units: m/s), as a function of reported pressure (units: hPa). Right panel: as left panel for the meridional 

wind components.  

An immediate effect of not being able to take the horizontal drift of the dropsonde into account is shown 

in the right panel of Figure 8, where the vertical profile of the root mean squared observation departures 

of the wind vector for dropsonde 3 is shown. These departures are seen to increase during the sonde 
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descent as the wind observations are compared to background fields that are less and less representative 

of the local flow. This inconsistency appears to have a significant effect on the resulting analysed TC 

structure. In Figure 9, top row, we show the background forecast (left panel) and the corresponding 

analysis (right panel) of the ECMWF operational cycle for the equivalent potential temperature field at 

850 hPa, together with the wind vector observation departures produced by dropsonde 3 (black arrows; 

magnitude of wind vector departures ranges from 60 to 95 m/s). These large wind departures across a 

temperature field with sharp spatial gradients tend to disrupt the TC axisymmetric thermal structure 

towards a frontal-type configuration. However, the ensuing forecast of the TC tends to return rapidly (in 

about 3-6 hours) to a more axisymmetric structure (Fig. 9, bottom row), suggesting that the solution 

produced by the analysis was not dynamically consistent. 

  

Figure 8. Left panel: observed wind vectors for dropsonde 3 launched at 12.45 UTC on 2016-10-01 

(numbers in the legend indicate reported height of wind measurement in hPa; length of wind arrows in 

the legend is 20 m/s); Right panel: profile of RMS wind vector observation departures for dropsonde 3 

as a function of reported pressure (units: hPa, m/s).  
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Figure 9. Left panel, top: Observation departures (O-B) for dropsonde 3 winds (black arrows) and 

operational background forecast of equivalent potential temperature at 850 hPa valid on 2016-10-01 

at 12UTC. Right panel, top: as left panel, for the operational analysis valid on 2016-10-01 at 12UTC. 

Left panel, bottom: t+3h forecast of equivalent potential temperature at 850 hPa started from 

operational analysis valid on 2016-10-01 at 12UTC. Right panel, bottom: as left panel, for t+6h forecast 

(units: Kelvin).  

Another significant side effect of the presence of the very large O-B departures caused by eyewall 

dropsondes is visible in the EDA-estimated background errors. As shown in Fig 10, these errors tend to 

show complex, multi-modal structures as a result of both EDA members location becoming more 

spatially scattered around the TC core and also because some of the members develop multi-core 

structures in their analyses and short-range forecasts. As these error estimates are then used in the 

successive analysis update, the potential for negatively affecting the accuracy of TC estimation in the 

data assimilation cycle is apparent. 
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Figure 10. Left panel: EDA-derived standard deviation of vorticity background errors for the 

operational IFS valid on 2016-10-01 at 21 UTC (black triangle shows estimated position of TC Matthew 

on 2016-10-21 at 18UTC). Right panel: Vorticity background forecast of member 4 of the operational 

EDA valid on 2016-10-21 at 21 UTC. Units 10-5s-1.  

 

4 Robust Quality Control of Dropsonde Observations  

The examples discussed in Sections 1 and 3 have highlighted problems connected with the use of 

dropsondes deployed close to the centre of a tropical cyclone in a high resolution, variational data 

assimilation system. A straightforward solution would be to simply exclude dropsonde observations in 

the vicinity of the TC centre. This solution was adopted in the operational IFS configuration from 7 

October 2016, in order to respond to repeated failures in the convergence of the 4D-Var algorithm in 

multiple members of the EDA system. These failures were tracked to the assimilation of dropsonde 

measurements in the vicinity of TC Matthew. However, as already shown in the case of hurricane 

Joaquin during the 2015 Atlantic hurricane season (Fig. 3), blacklisting dropsonde observations 

generally solves the numerical failures in the minimization, but it also tends to reduce the depth of the 

analysed TCs. This was also found to be the case for hurricane Matthew (Fig. 11).      
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Figure 11. Time evolution of the analysed minimum mean sea level pressure for the High Resolution  

analysis of the 43r1 IFS cycle (green continuous line); High Resolution analysis with blacklisted 

dropsonde observations near hurricane Matthew core (blue dashed line); estimated minimum sea level 

pressure of Hurricane Matthew according to official advisories (red dots, units: hPa). 

Another potential problem is the fact that the analysis system is not robust with respect to the presence 

of dropsonde observations that might have eluded the observation screening. Figure 12 shows how a 

single near core dropsonde  that escaped blacklisting by the screening degraded the analysis of  hurricane 

Matthew (valid on 2016-10-01 12UTC).  

 

Figure 12. Left panel: Observation-analysis departures of dropsonde wind vectors active in the 2016-

10-01 12UTC analysis update in the 600-1013 hPa atmospheric layer (coloured dots, see legend; units: 

m/s) for the experiment with correct blacklisting of “eyewall” dropsondes; black triangle denote 

estimated position of hurricane Matthew at nominal analysis time; MSLP analysis valid at nominal 

analysis time (black isolines, 5hPa intervals). Right panel: As left panel for experiment in which one 

“eyewall” dropsonde (purple dot) was accidentally allowed to enter the assimilation cycle. 



 On the initialization of Tropical Cyclones 

 

 

 

14 Technical Memorandum No.810 

 

Numerous other trials were also performed changing the rejection limits for the background QC check 

on dropsonde observations as described in Sect. 2. Results (not shown) were generally unsatisfactory, 

as it proved impossible to find rejection limits that gave consistently good performance. 

 

4.1 An adaptive First Guess Quality Control algorithm 

The examples discussed in the previous sections confirm that dropsonde wind observations are 

important for producing analyses with realistic estimates of the depth and location of tropical cyclones. 

However, the current quality control procedures based on selective blacklisting and first guess rejections 

are possibly too blunt an instrument to deal with the complex task of deciding whether to retain an 

observation with a large initial departure from the model background and how much weight it should 

be given in the analysis update. An adaptive QC procedure should be able to take these decisions based 

on information about the local flow and the a-priori estimates of the relevant error sources.  

A common way to characterize the errors present in an observation y is through the decomposition 

(Lorenc, 1986): 

𝑦 = ℎ(𝒙) +  𝜀𝐼 + 𝜀𝑅 + 𝜀𝐻                         (7) 

where h is the observation (or forward model) operator linking the true model state x to the observation; 

𝜀𝐼is the error due to the accuracy and precision of the instrument (Instrument error); 𝜀𝑅 is the 

representativity error, which accounts for the variability of the observed quantities on scales not resolved 

by the model sate; 𝜀𝐻 is the forward model error, i.e. the error associated with mapping the model state 

to the observation. In current operational practice at ECMWF, observation errors assigned to dropsonde 

wind observations are predefined and vary with height from 1.6 to 2.3 m/s (Fig. 13). They are derived 

from global, long term statistics of observation-background and observation-analysis departures 

covering the whole set of radiosonde measurements. Thus, they can be considered to be mainly 

representative of instrument errors encountered during a radiosonde ascent under “average” weather 

conditions. On the other hand, weather conditions during a dropsonde launch in the vicinity of a tropical 

cyclone are far from “average” and the assumed observation errors are likely to be considerably 

underestimated. Representativity errors (Daley, 1993; Liu and Rabier, 2002) are known to be state 

dependent and correlated in time (Janjic and Cohn, 2006; Waller et al., 2014) and are likely to be 

significant in the meteorological environment of tropical cyclones even for the model resolutions 

currently used in the IFS (approx. 9 km). 
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Figure 13. Assumed observation errors for dropsonde wind component observations as a function of 

height (units: m/s, hPa). 

More importantly, Figs. 7, 8 show that errors in the forward model can be the dominant source of errors 

for dropsondes deployed near the core of a tropical cyclone, mainly due to the lack of representation of 

the dropsonde horizontal drift during its descent. This effect is sensitive to the position of the dropsonde 

relative to the tropical cyclone and an example of this state dependency is shown in Figure 5. Both 

sources of error (representativity and forward model error) thus appear to be missing or significantly 

underestimated in the static observation error values used in operations. One possible way of tackling 

the problem is to consider the standard reliability condition of the O-B departures statistics: 

〈(𝒚 − 𝐺(𝐱0
𝑏))

T
(𝒚 − 𝐺(𝐱0

𝑏))〉 =  𝑑𝑖𝑎𝑔(𝐆𝐏𝐛𝐆𝐓) + 𝑑𝑖𝑎𝑔(𝐑)                     (8)           

and the result (Isaksen et al., 2010) that for a statistically consistent EDA the variance of the background 

forecasts is a reliable, flow dependent estimator of the background error variance:  

𝑑𝑖𝑎𝑔(𝐆𝐏𝐛𝐆𝐓) =
1

𝑁𝑒𝑛𝑠
∑ (𝐺(𝐱0,𝑖

𝑏 ) − 𝐺(𝐱0,𝑖
𝑏 )̅̅ ̅̅ ̅̅ ̅̅ ̅)

2
                                        (9)

𝑁𝑒𝑛𝑠

𝑖=1

 

The reliability condition (8) is only true in a statistical sense, i.e. when averaged over a large number of 

realizations of the observation, or, in practice, over a large number of observations under appropriate 

ergodicity assumptions. Thus, even for a perfectly reliable EDA the correlation between the magnitude 

of O-B departures and the EDA variance plus observation error variance cannot be one. However, 

theoretical and experimental results (e.g., Houtekamer, 1993; Whitaker and Loughe, 1998; Hopson, 

2012) show that the correlation between skill and spread depends on how much the forecast error 

distributions differs from its climatological distribution: the larger this difference is, the more skilful the 

ensemble variance is as a predictor of errors. Near tropical cyclones, the EDA background variances are 

typically more than 10 times larger than the local climatology (e.g., Fig. 14). For dropsondes in the 

vicinity of tropical cyclones with departures larger than the sum of EDA background variances and 

assumed observation errors, we assume the missing variance is due to the unaccounted representativity 

and forward model errors, i.e.: 
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 (𝑦 − 𝐺(𝐱0
𝑏))

2
= 𝜎𝑏

2 + 𝜎𝑜
2 = 𝜎𝑏

2 + 𝜎𝑜,𝐼
2 + 𝜎𝑜,𝑅

2 +𝜎𝑜,𝐻
2                                     (10)     

where 𝜎𝑏
2 is the (EDA derived) background error variance interpolated at the observation location; and 

𝜎𝑜
2 the total observation error variance, which has been further decomposed into its instrument, 

representativity and forward model components (assumed mutually uncorrelated and uncorrelated with 

the background errors). 

 

Figure 15. EDA-derived background error estimates for vorticity at model level 122 (approx. 925 hPa) 

for the operational IFS valid on 2017-09-05 21UTC (shaded; units 10-5 s-1) and operational mean sea 

level pressure background forecast valid at the same time (black isolines, 4 hPa interval). The local 

maximum of vorticity errors near (60W, 18N) corresponds to the location of hurricane Irma. 

 

We have then the following adaptive model for the representativity and forward model error 

components: 

             𝜎𝑜,𝑅
2 +𝜎𝑜,𝐻

2 = 0,                                                           𝑓𝑜𝑟   (𝑦 − 𝐺(𝒙0
𝑏))

2
≤ 𝜎𝑏

2 + 𝜎𝑜,𝐼
2   

𝜎𝑜,𝑅
2 +𝜎𝑜,𝐻

2 = (𝑦 − 𝐺(𝐱0
𝑏))

2
− (𝜎𝑏

2 + 𝜎𝑜,𝐼
2 ),         𝑓𝑜𝑟 (𝑦 − 𝐺(𝒙0

𝑏))
2

> 𝜎𝑏
2 + 𝜎𝑜,𝐼

2       (11) 

The effect of this observation error model is that, for a linear analysis update, the Kalman gain for the 

observation in question is no longer independent of the observation departure when the observation 

departure is larger than its expected value, i.e.: 

           𝐾𝐺 = 𝜎𝑏
2 (𝜎𝑜,𝑅

2 + 𝜎𝑜,𝐻
2 )

−1
,                                          𝑓𝑜𝑟   (𝑦 − 𝐺(𝒙0

𝑏))
2

≤ 𝜎𝑏
2 + 𝜎𝑜,𝐼

2  

𝐾𝐺 = 𝜎𝑏
2 (𝑦 − 𝐺(𝐱0

𝑏))
−2

,                                         𝑓𝑜𝑟 (𝑦 − 𝐺(𝒙0
𝑏))

2
> 𝜎𝑏

2 + 𝜎𝑜,𝐼
2       (12) 

This implies that analysis increments will also start decreasing with an inverse proportionality law to 

the magnitude of the observation departures if the observation departure is larger than its expected value 
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(Fig. 15). This makes intuitive sense, as these are the situations when the magnitude of the 

representativity and forward model errors imply that the observation in question should have a limited 

influence on the resulting analysis. We note also that this adaptive observation error model will reduce 

the size of the increments in the variational update (Eq. 5), thus improving the convergence of the 

minimization and  helping to keep incremental 4D-Var within the bounds of validity of the tangent linear 

hypothesis (Eq. 4). 

The background error 𝜎𝑏
2 in Eq. (11) is only available at the start of the assimilation window in the 

operational ECMWF analysis. Although it could, in principle, be calculated from the short range EDA 

forecasts for every time step during the assimilation window, that is not yet part of the operational 

schedule. This can lead to aliasing of the background error into the observation error for observations 

later in the assimilation window. For the large dropsonde departures around TC’s of several tens m/s 

this effect is negligible because the maximum EDA-estimated wind errors are less than 10 m/s. For 

small departures the adjustment is not used, so it is mostly for intermediate observation departures (say 

7-15 m/s) that the background errors could be aliased. This only happens if the background errors at a 

given location change significantly over the 12h assimilation window used in the current ECMWF 

analysis. This could be the case for a dropsonde in the latter half of the assimilation window close to the 

centre of a fast moving, small scale tropical cyclone. Depending on the location of the EDA error 

maximum at the start of the window, the background error at the observation location could be either 

overestimated (say 6 m/s instead of 2 m/s) or underestimated (say 2 m/s instead of 6 m/s). If the 

background errors are overestimated, it might cause the adaptation in Eq. (11) not to be applied, but 

because the departure itself has a manageable amplitude, this should not affect the quality of the analysis. 

If the background errors are underestimated, that might cause the adaptation in Eq. (11) to increase the 

observation errors more, but again since the departures are intermediate, this will reduce the weight of 

the observation and act to make the analysis more robust. 

 

Figure 15. Analysis increments as a function of observation departures for a linear analysis update 

using the standard observation error model (dash lines) and the adaptive observation error model 



 On the initialization of Tropical Cyclones 

 

 

 

18 Technical Memorandum No.810 

 

(continuous lines). Blue lines refer to a case where the assigned background error standard deviation 

is 5 m/s; red lines when the assigned background error standard deviation is 10 m/s. 

The dependence of observation errors on observation departures is also a characteristic of the variational 

QC based on the Huber norm that is currently applied in the operational 4D-Var minimization. It is thus 

interesting to compare the two algorithms, albeit in a simplified configuration. The Huber norm 

(Tavolato and Isaksen, 2015) defines a distribution of observation departure errors which is Gaussian 

inside a pre-defined interval [-c, c] and exponential outside. The transition point c (which can be 

different for the left and right tail of the distribution) is determined by collecting statistics of the relevant 

observation departures over a long enough period of time (Tavolato and Isaksen, 2015). For observations 

whose departures fall into the exponential part of the error distribution, the gradient of the Jo part of the 

4D-Var cost function is modified as follows: 

𝑊𝑄𝐶 = 1 − 𝑃 =
𝛻ℎ(𝑥)𝐽𝑜

𝐻𝑢𝑏𝑒𝑟

𝛻ℎ(𝑥)𝐽𝑜
𝐺𝑎𝑢𝑠𝑠 =

𝑐

|𝑦 − 𝐺(𝒙)|
                    (13) 

Where 𝑊𝑄𝐶 is the “weight” given to the observation by the quality control algorithm, which is simply 

related to the expected probability of gross error P.  Applying the 𝑊𝑄𝐶 weight to the gradient of the Jo 

cost function is equivalent to modifying the applied observation error as follows: 

𝜎𝑂 → 𝜎𝑂 (
|𝑦 − 𝐺(𝒙)|

𝑐
)

1/2

                                                   (14) 

which, in case of observations with uncorrelated errors, provides a simple mechanism to apply the Huber 

norm in the first outer loop of incremental 4D-Var. The above derivation suggests that in the exponential 

part of the Huber norm the Kalman gain acquires the form: 

𝐾𝐺
𝐻 =

𝜎𝑏
2

𝜎𝑏
2+𝜎𝑜

2(
|𝑦−ℎ(𝑥)|

𝑐
)
 ,         𝑓𝑜𝑟 |𝑦 − ℎ(𝒙)| > 𝑐           (15)   

This implies that the analysis increment will asymptote to values proportional to the square root of the 

magnitude of the observation departure. For the sake of comparison, if we assume the same transition 

point for the Huber norm as the one applied for the adaptive observation error algorithm, i.e., 𝑐 =

(𝜎𝑏
2 + 𝜎𝑜

2)
1/2

, then the application of the Huber norm QC in the first outer loop of 4D-Var would imply 

a considerably weaker constraint on the large analysis increments than the one enforced by the adaptive 

observation errors (Fig. 16). 
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Figure 16. Analysis increments as a function of observation departures for a linear analysis update 

using the standard observation error model (dash line); the adaptive observation error model 

(continuous line); and observation errors as implied by the application of the Huber norm (dash dot 

line). The assigned background error standard deviation is 5 m/s. 

   

4.2 Experimental results 

The adaptive error model for dropsonde wind observations described above has been evaluated in 

experiments run at the current operational resolution of the IFS (TCo1279, approx. 9 km grid spacing) 

in order to assess both its effectiveness and its robustness. 

To start with, dropsonde observation errors have been collected for all dropsondes deployed inside a 3-

degree box centred on all named tropical cyclones over a period of 10 months during the parallel pre-

operational tests of IFS cycle 43r3 (Fig. 17). The average values of dropsonde wind errors diagnosed by 

the adaptive error model are two to three times larger than the prescribed, static errors used in operations 

at the time (Fig. 17, right panel). The increase in the diagnosed errors in the lower troposphere reflects 

the increase in representativity and forward model errors discussed in Sec. 3.  The prescribed errors have 

obviously very little variability (red curve in the left panel of Fig. 17; the small deviations from zero are 

due to the changes induced by the Huber norm in the second and third outer loops of the 4D-Var update).  

The adaptive error model, on the other hand, introduces considerable variability in the diagnosed errors, 

more prominently in the lower troposphere where the errors are also larger.  
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Figure 17. Vertical profiles of the standard deviation (left panel) and average values (right panel) of 

the dropsonde wind errors for the static errors used in operations (red curves) and the adaptive errors 

used starting with IFS cycle 43r3 (black curves). Units: m/s.  

Unsurprisingly, this drastic change in observation errors results in significant changes in analysis (O-A) 

and background (O-B) departures (Fig. 18). This is very apparent in the middle and lower troposphere, 

where the standard deviation of the analysis fit (O-A) to dropsonde winds is increased by 30-40%. On 

the other hand, the standard deviation of background departures (O-B) is reduced for wind speed and 

the u wind component by 5-10%, suggesting that the adaptive observation error model is effective in 

representing some of the missing observation error sources.     
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Figure 18. Vertical profiles of the normalized standard deviation (left) and average values (right) of the 

analysis and background departures for dropsonde wind speed (top panel), dropsonde u wind 

component (middle panel) and dropsonde v wind component (bottom panel). Black curves refer to the 

experiment using the adaptive error model, red curves to the operational cycle using static errors. 

Negative (positive) values in the normalized St. Dev. plots indicate smaller (larger) background/analysis 

departures for the experiment using adaptive errors. Verification period: 2016-06-02 to 2017-03-28.  

Horizontal error bars indicate 95% confidence levels. 
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The use of the adaptive observation error scheme generally reduces the occurrence of unrealistic features 

in the analysis of tropical cyclones when dropsondes have been deployed. An example of this is given 

in Figure 19, where the analysis of TC Joaquin for an experiment using the adaptive observation error 

model is shown in the right panel. This can be compared with the results already shown in Fig. 2, and 

reproduced for convenience in Fig. 19, left panel, where the use of standard observation errors for 

dropsonde winds led to the filling of the analysed cyclone. 

 

Figure 19. Left panel: MSLP analysist valid at nominal analysis time for an experiment reproducing the 

EDA control member of the IFS cycle 41r2 esuite (black isolines, 5hPa intervals) and observation-

analysis departures of dropsonde wind vectors active in the 2015-10-02 00UTC analysis in the 600-

1013 hPa atmospheric layer (coloured dots, see legend, units: m/s; black triangle denotes estimated 

position of tropical cyclone Joaquin at nominal analysis time). Right panel: As left panel but for 

experiment using adaptive error model.      

Another example is presented in Fig. 20 where the operational analysis (left panel) and the analysis from 

a cycled experiment using the adaptive observation error model (right panel) is shown for the case 

tropical cyclone Matthew. The use of adaptive observation errors leads to a better analysis of the position 

of the cyclone and to a more axisymmetric structure, though some asymmetries are still visible. 

Another important consideration for a scheme to be used in operational NWP is its robustness and its 

capacity to avoid the numerical failures occurring with the previous scheme. It has indeed been found 

that no failures in either the EDA or the HRES 4D-Var assimilation cycles occurred in experiments 

conducted to test the scheme over the 2015 and 2016 Atlantic hurricane seasons. This was in a sense to 

be expected as the dynamic increase of observation errors as a function of the magnitude of observation 

departures helps to keep incremental 4D-Var within the limits of validity of the tangent linear hypothesis 

and thus facilitates the convergence of the scheme (Sec. 2).  

Even in cases when the standard error scheme does not lead to the occurrence of numerical busts, the 

new scheme tends to produce a smoother and more realistic evolution of the analysed cyclone depth. 

Two further examples of this behaviour are shown in Fig. 21 for tropical cyclone Joaquin (left panel) 

and tropical cyclone Matthew (right panel).  
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Figure 20. Left panel: Operational analysis of equivalent potential temperature at 850 hPa valid on 

2016-10-01 at 12UTC. Right panel: as left, for an assimilation experiment using the adaptive 

observation error model (units: Kelvin). Black triangle indicate estimated position of tropical cyclone 

Matthew.  

 

Figure 21. Left panel: Time evolution of the analysed minimum mean sea level pressure for tropical 

cyclone Joaquin from the HRES  4D-Var analysis of the standard 43r1 IFS cycle (green dash line) and 

of the 43r1 IFS cycle with adaptive observation errors for dropsondes (green continuous line); red dots 

indicate estimated minimum sea level pressure of the cyclone according to official advisories (units: 

hPa; timeline from 30/09/2015 00 UTC to 4/10/2015 18 UTC). Right panel: as left panel for tropical 

cyclone Matthew (timeline from 29/09/2016 12UTC to 5/10/2016 12UTC). 

 

5 Multi-eyed cyclones and non-Gaussian priors  

5.1 Symptoms 

Starting with the introduction of IFS cycle 41r2 (March 2016), and, more noticeably, with IFS cycle 

43r1 (November 2016) a tendency for the analysis of tropical cyclones to occasionally show unrealistic 

features had been noted. These features included the presence of asymmetries in the structure of the 

analysed cyclone, and even the presence of multiple mean sea level pressure minima and vorticity 

maxima in the analysed tropical cyclone (e.g., Fig. 4). A small, but statistically significant, degradation 

to the 24-hour forecast of tropical cyclone position in IFS cycle 43r1 was also observed.  
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It is worth noting that in both cycles where these initialisation issues were reported, an increase in 

horizontal resolution had been implemented. In cycle 41r2 the IFS changed from a linear to an octahedral 

reduced Gaussian grid, with an effective doubling of its grid-point resolution. In cycle 43r1 the 

resolution of the EDA estimated background errors used in the 4D-Var analysis was further increased 

from spectral truncation T159 to T399. Both these changes had the effects of considerably increasing 

the magnitude of the analysis increments in the lower troposphere for total wave numbers higher than 

50-60 (Resolutions smaller than approx. 300 km), as shown in Fig. 22. 

 

Figure 22. Left Panel: Spectral decomposition of initial analysis increments for vorticity at model level 

122 (approx. 925 hPa) in IFS cycle 41r1 (black curve) and in IFS cycle 41r2 (red curve). Right panel: 

as left, for IFS cycle 41r2 (black curve) and IFS cycle 43r1 (red curve). Units: s-1.  

With the increase in the high resolution components of the analysis increments, an increase in spurious 

high frequency oscillations during the first hours of the background forecast is visible (Fig. 23). The 

diagnostic presented in Fig. 23 (evolution of the globally averaged absolute surface pressure tendency) 

suggests that the background forecast is still undergoing an adjustment process three hours into the 

forecast range, when the assimilation window of the next analysis update starts, and that this process 

has become more noticeable with the increase in resolution. 

The adjustment processes taking place in the first few hours of the forecast can lead to unrealistic 

features in the background fields from which the following analysis update start. An example in given 

in Fig. 24, where the operational background forecast for mean sea level pressure during the initial 

evolution of tropical cyclone Eugene is shown. The initial elongated representation of the cyclone 

evolves into a double core structure which is then seen to produce a double core cyclone structure in the 

successive operational analysis, even though observations clearly point to a well-defined single core 

cyclone (Fig. 25).  

Together with the issues connected to the initial imbalances in the analysis, a tendency has also been 

noted for the background error estimates derived from the EDA to show more asymmetric structures 

and, in some cases, multiple maxima. An example of this behaviour is given in Fig. 26 for the case of 

tropical cyclone Patricia. It is important to note, however, that in this and similar cases the multipole 

structure of the EDA errors does not typically originate from the presence of multiple minima in the 

individual EDA member forecasts, as was the case for the poor convergence of the analyses of individual 

EDA members when large observation departures are present close to the TC, but from the more 

scattered distribution of cyclonic centres in the short range EDA forecasts. Thus, multiple minima do at 
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least partly reflect real uncertainty in the exact position of the cyclone in the short range background 

forecast rather than being an artefact of the initial imbalances of the EDA analyses, which are run at 

lower outer and inner loop resolutions than the HRES 4D-Var.   

 

Figure 23. Evolution of the forecast globally averaged absolute pressure tendency for experiments from 

IFS cycle 43r1 (black curve), IFS cycle 41r2 (red curve) and IFS cycle 41r1 (blue curve) during the first 

12 hour of the forecast (unit: Pa/3hour).Curves are computed as average values over six assimilation 

updates.  
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Figure 24. Evolution of the mean sea level pressure background forecast for the operational 43r1 IFS 

cycle started on 2017-07-07 at 18UTC at t=0h (top left panel); t=3h (top right panel); t=6h (bottom left 

panel); t=9h (bottom right panel). (Isolines increment: 1hPa). 

 

Figure 25. Background forecast (right panel) and analysis of the mean sea level pressure field for the 

operational 43r1 IFS cycle valid on 2017-07-08 at 00UTC in the vicinity of tropical cycle Eugene (black 

diamond indicate estimated position of the cyclone at the analysis time). Wind arrows show observed 

winds from ASCAT instrument valid on 2017-07-08 at 04.35UTC. 

 

 

Figure 26. Background forecast (left panel) and EDA-estimated background errors (right panel) for the 

mean sea level pressure field for the operational 41r2 IFS cycle valid on 2015-10-23 at 09UTC in the 

vicinity of tropical cycle Patricia (black/red diamond indicate estimated position of the cyclone at the 

nominal time); Units: hPa. 
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The appearance of multimodal error distributions in the tropical cyclone forecast position can be viewed 

as a symptom of the increasing deviations from Gaussianity of the EDA forecast ensemble with 

increasing resolution. This is apparent in Fig. 27 where the K2 D’Agostino diagnostic test of deviation 

from normality (D’Agostino et al., 1990; Legrand et al., 2016) is presented for different resolutions of 

the short range EDA background vorticity forecasts. The D’Agostino test highlights deviations from 

normality due to how much the skewness and kurtosis of the sample distribution differ from those of a 

Gaussian distribution: For normal distributions, the K2 diagnostic approximately follows a chi-squared 

law with two degrees of freedom. The plots in Fig. 27 clearly show the increase in this measure of non-

Gaussianity as a function of the increase of the grid and, more sensitively, spectral resolution at which 

the EDA ensemble forecast is sampled.         

 

Figure 27. K2 D’Agostino test statistics of deviation from normality for EDA background forecasts of 

vorticity at different resolutions: triangular spectral truncation 159 on linear reduced Gaussian grid 

(TL159), triangular spectral truncation 159 on cubic octahedral reduced Gaussian grid (TCo159); 

triangular spectral truncation 399 on linear reduced Gaussian grid (TL399).   

 

5.2 Therapies 

The diagnostics presented above indicate that increasing the small-scale contributions to the EDA-

derived background errors over recent IFS cycles has affected the analysis of tropical cyclones in two 

ways: a) contributing to the increase in small-scale analysis increments and the noisiness of the ensuing 

analyses and forecasts, and b) introducing non-Gaussian features in the diagnosed error distribution. As 

a first step towards controlling these effects, it has been decided in IFS cycle 43r3 to reduce the 

resolution of the EDA-derived background errors used in the 4D-Var analysis to spectral truncation 

T159 on a linear reduced Gaussian grid. In combination with this change, the algorithm used to filter 

small scale sampling noise from the EDA-derived errors has been changed from a spectral to a wavelet-

based approach (Bonavita et al., 2012). The wavelet approach has the advantage of allowing for spatial 

variations in the filter, which can be useful if sampling errors show appreciable heterogeneity. This 

appears to be case for the EDA-estimated errors, as confirmed in Figure 28. There we present the 
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diagnosed longitudinally averaged profile of the signal-to-noise ratio for the EDA-derived vorticity 

background errors in the spectral range T127-159. It is apparent that the wavelet filter based on this 

signal-to-noise diagnostic will be more active in suppressing small scale features in the tropical belt than 

in the extra-tropics.      

 

Figure 28. Longitudinal average of the signal-to-noise ratio for the EDA-derived vorticity background 

errors in the spectral range T127-159. Model levels on y-axis.  

The combination of reduced resolution of the background errors used in the analysis and the more 

selective noise filter leads to a noticeable reduction of the magnitude of small scale increments above 

spectral number 80 (Fig. 29, left panel); and to a small but consistent reduction of globally averaged 

absolute pressure tendencies during the background forecast (Note however, how it still take approx. 9 

hours for the adjustment process from the initial conditions to complete). As a result, initial conditions 

and short range forecasts of tropical cyclones appear more axis-symmetric and less prone to develop 

multiple centres (e.g., Fig. 30, to be compared with Fig. 24 for the case of tropical cyclone Eugene; and 

Fig. 31, left panel, to be compared with Fig. 26, left panel, for the case of tropical cyclone Patricia). The 

estimates of background errors also show less asymmetries and/or multi-modal features apparent in 

previous IFS cycles (e.g., Fig. 31, right panel, to be compared with Fig. 26, right panel). More regular 

background fields and unimodal background error structures finally result in more physically consistent 

analyses of tropical cyclones (e.g., Fig. 32).    
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Figure 29. Left panel: Spectral decomposition of initial analysis increments for vorticity at model level 

122 (approx. 925 hPa) in IFS cycle 43r1 (black curve) and in IFS cycle 43r3 (red curve). Units: s-1. 

Right panel: Evolution of the forecast globally averaged absolute pressure tendency for experiments 

from IFS cycle 43r1 (black curve), and IFS cycle 43r3 (red curve) during the first 12 hour of the forecast 

(unit: Pa/3hour).Curves are computed as average values over six assimilation updates.  

 

Figure 30. Evolution of the mean sea level pressure background forecast for the pre-operational 43r3 

IFS cycle started on 2017-07-07 at 18UTC at t=0h (top left panel); t=3h (top right panel); t=6h (bottom 

left panel); t=9h (bottom right panel). (Isolines increment: 1hPa). 
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Figure 31. Background forecast (left panel) and EDA-estimated background errors (right panel) for the 

mean sea level pressure field for a 43r3 IFS cycle experiment valid on 2015-10-23 at 09UTC in the 

vicinity of tropical cycle Patricia (black/red diamond indicate estimated position of the cyclone at the 

nominal time); Units: hPa. 

 

Figure 32. Cross section of tropical cyclone Patricia analysed relative vorticity field valid on 2015-10-

23 at 12UTC from reference 41r2 experiment (left) and a cycle 43r3 experiment with the changes 

introduced to improve the initialization of tropical cyclones as described in the main text. Units: s-1. 

 

6 Verification of Tropical Cyclones analyses and forecasts 

The verification of tropical cyclones analyses and forecasts is mainly performed against official 

estimates of the position and intensity as reported by one of the six tropical cyclone Regional Specialized 

Meteorological Centres (RSMC) responsible for the basin in question. These estimates are in many cases 

the only source of information available for verification. They are associated with position and intensity 

uncertainties that are dependent on basin, cyclones intensity and to some extent the availability of other 

in-situ observations. Position uncertainties are expected to be smaller for deep tropical cyclones (thanks 

to their well-defined cloud patterns) but, in contrast, the intensity errors are believed to be significantly 

larger. Occasionally the estimated minimum sea level pressure is kept at unrealistically constant levels 
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for many hours due the way detection techniques (e.g. Advanced Dvorak Technique, ADT: Olander and 

Velden, 2007) work and the availability of microwave satellite observations (able to penetrate through 

clouds). An example of this behaviour is given in Fig. 33 for TC Malakas. Best track data are a refined 

estimates of the position and intensity but usually they are provided in a delayed mode (up to few months 

later for some RSMCs). The other measurements of tropical cyclones intensity are also prone to errors 

that are situation dependent. The main factors influencing observation errors are: 

• Size and intensity of tropical cyclones 

• Basin: different practices for each RSMC and typical environmental conditions (e.g. SST)  

• Sampling issues (e.g. dropsondes)  

• Limitations of TC tracking technics (e.g. ADT)  

• Instrumentation errors 

 

 

Figure 33. Verification of ECMWF HRES and ENS forecasts initialised on 2016-09-15 00UTC, for 

tropical cyclone Malakas. Red circles represent the estimated minimum MSLP from the RSMC reports. 

The verification of tropical cyclones analyses and forecasts is therefore complicated due to the varying 

nature and magnitude of the errors in the RSMC advisories. In some situations, the magnitude of these 

errors might even mask improvements made by the data assimilation.  It is thus useful to be able to 

verify the TC analyses and forecasts against a range of other available observations, e.g.: surface 

pressure, 10m wind from scatterometer and wind/temperature from dropsondes.  Differences between 

the analysis and observations are routinely computed by the data assimilation system. Such comparison 

can now be extended to medium range forecasts thanks to the computation of forecast departures 

(Dahoui et al. 2016). The verification statistics can be computed for individual tropical cyclones or for 

all tropical cyclones during a defined period. Statistics are generated using observations located within 

a small moving area around tropical cyclones. Depending on the position of the tropical cyclone relative 

to the progressing orbit of satellites, only part of the feature may be sampled by the scatterometer data, 

both spatially and temporally. This type of verification is not meant to replace the standard verification 

based on the official reports of track position and minimum pressure as provided by RSMCs, but to 

complement it and extend to times when the standard verification is not available or it turns out to be 

inaccurate (e.g., Fig. 34).  
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Figure 34. 10m wind from the ASCAT scatterometer on board METOP-A at 12.06 UTC on 2017-02-22 

(green arrows) and their counterpart from the background forecast of the operational IFS near tropical 

cyclone Alfred on 2017-02-22 at 12 UTC. Red triangle represents reported tropical cyclone location. 

 

7 Discussion and research perspectives  

The results and examples discussed in this paper show that providing an accurate and realistic 

representation of the initial conditions of a tropical cyclone for NWP purposes can sometimes be 

challenging. Sometimes the standard assumptions about the validity of the tangent linear hypothesis in 

incremental 4D-Var fail. In addition, assumptions about normality and accuracy of the error models 

used in the analysis update become increasingly less valid when using observations sampling the 

atmosphere near the TC centre.  

The problems seen in determining appropriate initial conditions for tropical cyclones have become more 

frequent in the past few years, as the spatial resolution has increased in the IFS model, the analysis 

system and the EDA-derived background errors. This is understandable because at the current resolution 

(TCo1279, approx. 9 km grid spacing) the IFS model is capable of forecasting tropical cyclones of 

realistic intensity and structure (Fig. 35. Note how the mean intensity error of the t+3d forecast has 

reduced close to zero in recent years). As the case of the dropsonde winds has highlighted, the 

combination of realistic TC background forecasts with observations sampling the inner structure of a 

tropical cyclone can produce observation departures an order of magnitude larger than the total 

(background plus observation) expected error, or more. These conditions lead to the breakdown of the 

tangent linear hypothesis in incremental 4D-Var and occasional numerical failures. Even when the 

assimilation does not fail, results can be significantly degraded, as also reported in previous studies 

(Harnisch and Weissman, 2010; Aberson, 2008). The solution proposed here is to account explicitly for 

representativity and forward model errors of these observations through an adaptive observation error 
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model based on the reliability condition between observation departures and expected total error. This 

error model also acts as an effective “soft” quality control algorithm, gradually decreasing the weight 

given in the assimilation to dropsonde winds with increasing O-B departures. This approach has 

improved the robustness of 4D-Var and the quality of the tropical cyclone analyses both in selected test 

cases and in overall statistical evaluation over an extended period. It will be interesting to test this model 

with other observations. Particularly relevant for the analysis of tropical cyclones are  near surface winds 

derived from scatterometer measurements, as they often provide one of the few available direct 

observations of the TC near-surface structure and location. For this type of observations the error model 

introduced here should be appropriate, as it has been shown (Lin et al., 2016) that both the scatterometer 

wind errors and the ECMWF background errors tend to increase in variable atmospheric conditions.  

 

Figure 35. Evolution of tropical cyclone prediction errors from the HRES and the ensemble forecast. 

Top row: evolution of mean position errors for the HRES forecast at t+3d (continuous line) and t+5d 

(dotted line); Units: km. Bottom row, left: evolution of mean intensity error for t+3d HRES forecast 

(blue line) and t+3d ensemble control forecast (green line). Bottom row, right: as left for the mean 

absolute intensity error. Units: hPa. 

While having realistic error models is crucial for the success of data assimilation, it will still be important 

to be able to reduce the magnitude of these errors and thus provide a stronger observational constraint 

to the analysis. In the case of dropsondes, while an irreducible part of the perceived error comes from   

scales of motion sampled by the sonde and not by the model (representativity errors), an occasionally 

very large component originates from not taking the horizontal drift of the sonde into account (i.e., 

forward model error). Correcting this error will be possible with the dissemination of dropsonde reports 

in binary BUFR format, anticipated for 2018 (though encouraging results have been recently reported 
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by reconstructing the position of the dropsonde from ancillary information present in current 

alphanumerical reports, Aberson et al., 2017). 

Another aspect studied in this report is the tendency of the IFS to occasionally produce analyses with 

multiple TC cores in situations when imagery and/or other observational evidence points to the existence 

of a single cyclone core. These effects have also become noticeable in conjunction with the increases in 

recent IFS cycles of the horizontal resolution of the model, the data assimilation system and the 

background errors used in 4D-Var. These resolution increases have in turn produced significant 

increases in small-scale analysis increments in the lower model levels and a connected increase in the 

level of gravity wave noise in the initial hours of the forecast. As a consequence of the adjustment 

processes taking place in the first few hours of the forecast, the background can develop multiple TC 

cores (visible as multiple MSLP minima and/or vorticity maxima) and this negatively affects the 

following analysis. This behaviour is more apparent in cyclones in the early stage of their development 

and/or poorly constrained by observations. Reducing the resolution of the background errors together 

with the application of a heterogeneous noise filter (both implemented in IFS cycle 43r3, July 2017) has 

proved effective in controlling the issues of multiple core TCs and, at the same time, improving the 

convergence properties of the 4D-Var minimization. On the other hand, the short range background 

forecasts still show evidence of initial imbalances and subsequent adjustment processes taking place in 

the first 6-9 hours. It may thus be appropriate to look again at the current configuration of the variational 

digital filter implemented in the IFS (Jc-DFI, Gauthier and Thépaut, 2001) and its effectiveness in 

damping spurious oscillations in the model. 

A more worrying pattern is the occasional occurrence of multiple error maxima in the EDA-derived 

background errors near tropical cyclones. Due to the lower outer and inner resolutions employed in the 

EDA 4D-Var, these multipole error structures do not usually originate from single EDA members 

developing multiple minima but from increasing small scale variability in their predicted positions and 

occasionally bad convergence of the analysis in individual members. This pattern can be seen as 

symptomatic of a more general tendency of the EDA short range forecast ensemble to deviate from a 

Gaussian distribution. Standard diagnostic tests of deviation from normality confirm that while this 

effect is relatively small at spectral resolution T159, it is significant at spectral resolution T399. The 

reduction in the resolution of the background errors used in 4D-Var thus appears to be not only a 

practical step to control initial imbalances but also to be required to reduce non-Gaussian effects in the 

EDA background forecast ensemble. Of course, if the accuracy of the short range forecast improves 

enough as the resolution increases, that would also reduce the occurrence of multiple minima.                        

A more fundamental approach to reduce non-Gaussian effects in the EDA forecast ensemble and thus 

improve the TC analyses entails an increased use of satellite observations to constrain the TC 

environment and structure. Scatterometer wind observations provide near “all-weather” surface winds 

with valuable information on the TC location and strength. Initial tests on increasing the density and 

weight of scatterometer derived wind vectors in the IFS showed benefits in the resulting analyses of 

selected tropical cyclones (De Chiara et al., 2017). Another potentially important source of observations 

for the initialisation of tropical cyclones are satellite radiances in the “all-sky” framework (Bauer et al., 

2010; Geer et al., 2017). The ability to use satellite observations in cloudy and precipitating conditions 

will be important in order to have an effective observational constrain on the TC vortex and its associated 

rainbands. Further improvements are expected from developments towards extending the “all-sky” 

approach to temperature-sounding microwave radiances and infrared radiances and from the use of 

observations from future satellite-based cloud and precipitation radars (ECMWF/SAC/46(17)12). One 
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current limitation in the use of scatterometer winds and “all-sky” radiances is the need to use 

considerably thinned datasets together with inflated error variances to deal with representativity errors 

and significant spatial error correlations in the horizontal (De Chiara et al., 2017; Geer and Bauer, 2011). 

It has however been shown (e.g., Rainwater et al., 2015) that correctly accounting for correlated errors 

is important in recovering small-scale spatial information from observations. We thus expect that the 

development of this capability in the IFS will prove beneficial to TC initialisation and to the analysis 

accuracy in general.      

Verification of the accuracy of tropical cyclone analyses and forecasts is typically done using best track 

position and minimum pressure from RSMC advisories. This can be problematic for analyses and short-

range forecasts, when uncertainties in the reported position and the even larger uncertainties in the 

estimated intensity of the TC are comparable to those of the NWP products. In these cases, we have 

found useful to complement the standard verification with an observation-based approach, realised by 

computing O-B and O-A statistics targeted to a moving area around the tropical cyclone.      

 

8 Conclusions  

Accurate forecasts of the trajectory and intensity of tropical cyclones are ever more important in order 

to reduce their destructive impact on life and property. Increases in the resolution of atmospheric NWP 

models and progress in the representation of physical processes have certainly helped improve the 

ECMWF prognosis of TC evolution (e.g., Bechtold et al., 2012; Haiden et al., 2016), while promising 

results have been obtained from a coupled Atmosphere-Ocean forecast configuration able to represent 

aspects of the complex atmospheric and oceanographic interactions during tropical cyclone conditions 

(Mogensen et al., 2017).  

While improvements in the IFS model resolution and accuracy have been shown to be able to produce 

increasingly realistic forecasts of tropical cyclones, they also present a more difficult problem to the 

data assimilation system. This is because standard assumptions about representativity and forward 

model errors, normality of background errors, validity of the tangent linear hypothesis and dynamical 

balances in the analysis are called into question when the DA system has to deal with observations 

sampling the tropical cyclone centre. In this sense, the initialisation of tropical cyclones can be seen as 

a testbed for the performance of the DA system and its robustness in situations that can be very far from 

climatological averages. From this perspective, the enhanced use of EDA information to characterise 

observations errors in addition to background errors can be seen as a practical way to sample error 

distributions under these conditions. More generally, increasing and improving the use of available 

observations will be fundamental to our ability to provide accurate analyses and prognoses of tropical 

cyclones and also to provide additional verification tools. Research activities in this direction are 

ongoing and their results will be the subject of a future paper.     
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