

Very high-resolution, non-hydrostatic, short-range ensembles

Inger-Lise Frogner

ECMWF Annual Seminar 11 - 14 September 2017

But: Deterministic forecasts first 2-3 days are nearly perfect ! - for z500

NWP quality for 500hPa geopotential heights

A. Simmons

A predictable situation?

MSLP

Courtesy Morten Køltzow, MET Norway

○ Norwegian Meteorological Institute

It depends on the scales you are interested in

"A tweet" with 1hr model precipitation in blue (+11hr), observed lightning in red, and radar reflectivity valid at the same time as the previous slide with MSLP

Courtesy Morten Køltzow, MET Norway

Norwegian Meteorological Institute

Synoptic scale agreement between MEPS (2.5km) members

24hr accumulated precipitation and MSLP 27.August 2016

Zooming in on a catchment area

24h accumulated precipitation (+6h - +30h)

20-30 mmObserved in Sogndal: 41.2 mm30-40 mmForecasted in Sogndal: 24.9mm (control) - 42.5mm (member 3)40-50 mmForecasted in Sogndal: 24.9mm (control) - 42.5mm (member 3)

Courtesy Morten Køltzow, MET Norway

Norwegian Meteorological Institute Very high-resolution, non-hydrostatic, short-range ensembles: Challenges

1. Predictability as a function of scale

Classical predictability behaviour

Predictability as a function of scale

Spectra of mean-square 850hPa temperature errors

Forecast lead time when Rank Probability Skill Score (RPSS) for EC ENS of Z500 < 0.3 (1994-2007)

Jung, T. and Leutbecher, M. (2008)

Scale dependence of predictability for precipitation

Institute

Surcel, M., I. Zawadzki, and M.K. Yau, 2015

Very high-resolution, non-hydrostatic, short-range ensembles: Challenges

Predictability as a function of scale Constructing the ensemble

An accurate analysis

Norwegian Meteorological Institute

Computationally fast and frequently updated

Short model spin-up

Norwegian Meteorological Institute

Accounting for model error

Norwegian Meteorological Institute

Accounting for surface uncertainties

The lateral boundaries

.. No LBC pert.

___LBC pert.

Summer Winter

Frogner and Iversen, 2002

Cycling strategies

MOGREPS-UK Hourly-cycling Demo Suite

18M/6h MOGREPS-UK Nested in 18M MOGREPS-G **Assumptions**: Each cycle takes LBCs and IC perts from latest available MOGREPS-G. Initial Demo Suite at 2.2km resolution to T+36

Operational-suite demo implementation at 1.5km resolution to T+120

© Crown copyright Met Office

Courtesy Ken Mylne

Courtesy Xiaohua Yang

COMEPS - for Nowcasting

_

How does high-resolution EPS (MEPS) score against EC ENS?

Spread and skill 12h accumulated precipitation July 2017

Very high-resolution, non-hydrostatic, short-range ensembles: Challenges

- 1. Predictability as a function of scale
- 2. Constructing the ensemble
- 3. Using the ensemble

Norwegian Meteorological Institute

Probabilistic forecasts = Better decisions, right?

Example based on a talk by A. Singleton (MET Norway)

Deterministic forecast 12:00-13:00

Mostly sunny. Risk of local fog, mainly along the coast.

10:00

Deterministic forecast 12:00-13:00

fog

"What does the probability forecast say?

Deterministic forecast 12:00-13:00

10:00

fog

Probability of fog **10:00-11:00**: 20%

Probability of fog **11:00-12:00**: 20%

Probability of fog **12:00-13:00**: 20%

Probability of fog **13:00-14:00**: 20%

Probability of fog **14:00-15:00**: 20%

Probability of fog 14:00-15:00: 20%

Member 1: fog 11:00 -12:00

Member 2: fog 10:00 -11:00

Member 3: fog 14:00 -15:00

Member 4: fog 12:00 -13:00

Member 5: fog 13:00 -14:00

Probability of fog during the trip: 100%

Probability of fog **14:00-15:00**: 20%

10:00

Probability of fog 14:00-15:00: 20%

Probabilistic forecasts = Better decisions, right?

Only if the probability directly refers to the decision

Good use of probabilistic forecasts

Good use of probabilistic forecasts

Courtesy: Andrew Singleton

Uncertainty information gives the user an indication of how confident they can be in a forecast.

Good use of probabilistic forecasts

Courtesy: Andrew Singleton

Uncertainty information gives the user an indication of how confident they can be in a forecast.

Probability information can be more complex as it requires an event definition, which may be unique to each individual user. The event definition may include

Good use of probabilistic forecasts

Courtesy: Andrew Singleton

Uncertainty information gives the user an indication of how confident they can be in a forecast.

Probability information can be more complex as it requires an event definition, which may be unique to each individual user. The event definition may include

- a threshold
- a time window
- a spatial area
- any other conditions

Good use of probabilistic forecasts

Uncertainty information gives the user an indication of how confident they can be in a forecast.

Probability information can be more complex as it requires an event definition, which may be unique to each individual user. The event definition may include

- a threshold
- a time window
- a spatial area
- any other conditions

Good communication with users is therefore essential for ensemble forecasts to be used to their full capacity as a decision making tool.

Courtesy: Andrew Singleton

Good use of probabilistic forecasts

Forecast from yr.no - based on EC ENS

Forecast from yr.no - based on EC ENS

ENS Meteogram

Finse 51.52°N 0.97°W (ENS land point) 81 m

High Resolution Forecast and ENS Distribution Friday 25 August 2017 00 UTC

Precipitation

ECMWF

ENS Meteogram

Finse 51.52°N 0.97°W (ENS land point) 81 m

High Resolution Forecast and ENS Distribution Friday 25 August 2017 00 UTC

ECMWF

Precipitation meteogram with interactivity

Courtesy John Bjørnar Bremnes, MET Norway

Precipitation meteogram with interactivity

Courtesy John Bjørnar Bremnes, MET Norway

Precipitation meteogram with interactivity

Courtesy John Bjørnar Bremnes, MET Norway

1.0

Very high-resolution, non-hydrostatic, short-range ensembles: Challenges

- **1. Predictability as a function of scale**
- 2. Constructing the ensemble
- 3. Using the ensemble
- 4. Even higher resolution?

Higher resolution or more members?

Meteorological

Institute

MOGREPS- UK: Hagelin et al, 2017

Higher resolution or more members?

O Norwegian Meteorological Institute

Raynaud and Bouttier, 2017

A case with apparent over-forecasting of wind in Greenland

Meteorological

Institute

Courtesy Xiaohua Yang, DMI

On 17/11 2016, while TASIILAQ wind measurement reads 6 m/s, it measured 15-22 m/s from the ship mast offshore the TASIILAQ harbour a few km away.

(Courtesy Ship Captain Eyðun Simonsen, M/V Arina Arctica)

Very high-resolution, non-hydrostatic, short-range ensembles: Challenges

- **1. Predictability as a function of scale**
- 2. Constructing the ensemble
- 3. Using the ensemble
- 4. Even higher resolution?
- 5. Post processing

1: Smart neighbourhood

Method: Use nearest gridpoint at same elevation

Courtesy Thomas Nipen and Ivar Seierstad, MET Norway

2: Downscaling using a high-resolution reference

Winds too weak in mountain areas

Method:

- Use historical AROME and EC
- Quantile mapping on each gridpoint

Results:

- Better forecast climatology

Courtesy Thomas Nipen and Ivar Seierstad, MET Norway

Downscaling using a high-resolution reference

Courtesy Thomas Nipen and Ivar Seierstad, MET Norway

Very high-resolution, non-hydrostatic, short-range ensembles

To summarize: Ongoing work and open questions
Very high-resolution, non-hydrostatic, short-range ensembles

To summarize: Ongoing work and open questions

- Better error descriptions
- More members vs. higher resolution vs. size of area?
- How long forecasts are meaningful?
- Nowcasting
- Calibration and post processing
- Interactive use

Very high-resolution, non-hydrostatic, short-range ensembles

To summarize: Ongoing work and open questions

- Better error descriptions
- More members vs. higher resolution vs. size of area?
- How long forecasts are meaningful?
- Nowcasting
- Calibration and post processing
- Interactive use

Thank you for your attention

References

Frogner, I-L and Iversen, T (2002), High-resolution limited-area ensemble predictions based on low-resolution targeted singular vectors. Q.J.R. Meteorol. Soc., 128, pp. 1321–1341

G.J. Boer (2003) Predictability as a function of scale, Atmosphere-Ocean, 41:3, 203-215, DOI: 10.3137/ao.410302

Hagelin, S., Son, J., Swinbank, R., McCabe, A., Roberts, N. and Tennant, W. (), The Met Office convective-scale ensemble, MOGREPS-UK. Q.J.R. Meteorol. Soc.. Accepted. doi:10.1002/qj.3135

Jung, T. and Leutbecher, M. (2008), Scale-dependent verification of ensemble forecasts. Q.J.R. Meteorol. Soc., 134: 973–984. doi:10.1002/qj.255

Raynaud L, Bouttier F. 2017. The impact of horizontal resolution and ensemble size for convective-scale probabilistic forecasts. Q.J.R. Meteorol. Soc., Accepted, doi: 10.1002/qj.3159

Surcel, M., I. Zawadzki, and M.K. Yau, 2015: <u>A Study on the Scale Dependence of the Predictability of Precipitation Patterns.</u> *J. Atmos. Sci.*, **72**, 216–235, <u>https://doi.org/10.1175/JAS-D-14-0071.1</u>