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Use proper scores to rank probability forecasts
Consider forecasts f1, f2, . . . and outcomes x1, x2, . . .

Definition: A scoring rule, s(f , x), gives a numerical score to
each forecast.

Example: Let x = 0 or 1, f = Pr(x = 1) and s(f , x) = (f − x)2.

Measure performance by the mean score, s̄ =
∑n

i=1 s(fi , xi)/n.

Suppose that x1, x2, . . . have frequency distribution p and that
we issue the same forecast, f , for all x1, x2, . . .

The best choice is f = p.

Definition: A scoring rule is proper if the long-run mean score
is optimized by f = p.

Example: (f − x)2 is proper; |f − x | is improper.
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Example: two proper scores
Let F (t) = Pr(x ≤ t) be the probability forecast for 1(x ≤ t).

For ensemble z1, . . . , zm define F (t) =
∑m

i=1 1(zi ≤ t)/m.

Example: Brier score,

BS = {F (t)− 1(x ≤ t)}2.

BS = 0.17 (0.03) when t = 0.
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Example: two proper scores
Let F (t) = Pr(x ≤ t) be the probability forecast for 1(x ≤ t).

For ensemble z1, . . . , zm define F (t) =
∑m

i=1 1(zi ≤ t)/m.

Example: Brier score,

BS = {F (t)− 1(x ≤ t)}2.

BS = 0.17 (0.03) when t = 0.

Example: Continuous Ranked
Probability score,

CRPS =

∫
{F (t)−1(x ≤ t)}2 dt .

CRPS = 0.59 (0.05).



Probability forecasts Extreme events Ensemble forecasts Degenerating scores Conclusion

Probability forecasts

Forecasts of extreme events

Ensemble forecasts

Degenerating scores

Conclusion



Probability forecasts Extreme events Ensemble forecasts Degenerating scores Conclusion

Forecasts of some extremes are verified as usual
Forecasts of occurrences of extreme events (e.g. storms)

I Use proper scores for binary events, e.g. Brier score.

Forecasts of block maxima (e.g. annual maximum rainfall)
I Use proper scores for numerical outcomes, e.g. CRPS.
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Forecasts of large values need care
Ask: how well do we forecast outcomes, x , that exceed u?

Suppose that we calculate a score using only cases with x > u.

This score is hedged by forecasts that assume x > u always!

This phenomenon is called the
forecaster’s dilemma.

Example: CRPS calculated
using only cases with x > u for
original forecasts (solid) and
biased forecasts (dashed).

At high thresholds, the biased
forecasts have better scores.
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Use weighted scores for forecasts of large values
Should ask: how well do we forecast whether outcomes exceed
u and, if they do, how well do we forecast the outcomes?

So we want good forecasts of Pr(x ≤ u) and Pr(x | x > u).

Example: Threshold-weighted
CRPS,∫

u
{F (t)− 1(x ≤ t)}2 dt .
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Use weighted scores for forecasts of large values
Should ask: how well do we forecast whether outcomes exceed
u and, if they do, how well do we forecast the outcomes?

So we want good forecasts of Pr(x ≤ u) and Pr(x | x > u).

Example: Threshold-weighted
CRPS,∫

u
{F (t)− 1(x ≤ t)}2 dt .

twCRPS for original (solid) and
biased (dashed) forecasts.

Original forecasts have better
scores at all thresholds.
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Use fair scores to rank ensemble forecasts
We used proper scoring rules to verify ensemble probabilities.

This rewards an EPS if it produces good probabilities for its
current ensemble size even if it would produce bad probabilities
for other (e.g. infinite) ensemble sizes.

Example: Let z̄ be the proportion of m ensemble members that
forecast the event {x = 1}. If m = 50 and the event occurs 1%
of the time then the long-run mean of the Brier score, (z̄ − x)2,
is optimized by ensembles that never forecast the event!

Suppose that x1, x2, . . . have distribution p and that we sample
ensembles z1, z2, . . . from one distribution, f , for all x1, x2, . . .

Definition: A scoring rule, s(z, x), is fair if the long-run mean
score is optimized by f = p.

Example: (z̄ − x)2 is unfair; (z̄ − x)2 − z̄(1− z̄)/(m − 1) is fair.
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Example: three fair scores
Let F (t) = Pr(x ≤ t) be the probability forecast for 1(x ≤ t).

For ensemble z1, . . . , zm define F (t) = m−1 ∑m
i=1 1(zi ≤ t).

Example: Fair Brier score,

BS− F (t){1− F (t)}
m − 1

.

Example: Fair CRPS,

CRPS−
∫

F (t){1− F (t)}
m − 1

dt .
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Example: three fair scores
Let F (t) = Pr(x ≤ t) be the probability forecast for 1(x ≤ t).

For ensemble z1, . . . , zm define F (t) = m−1 ∑m
i=1 1(zi ≤ t).

Example: Fair Brier score,

BS− F (t){1− F (t)}
m − 1

.

Example: Fair CRPS,

CRPS−
∫

F (t){1− F (t)}
m − 1

dt .

Example: twCRPS (black) and
fair twCRPS (red).
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Adjust scores to the desired ensemble size
Fair scores are unbiased estimates of the scores that would be
obtained if the ensemble size were infinite.

We also have unbiased estimates of the scores that would be
obtained for any ensemble size, M.

Example: Adjusted Brier score,

BS− (1−m/M)F (t){1− F (t)}
m − 1

.

Example: Adjusted CRPS,

CRPS−
∫

(1−m/M)F (t){1− F (t)}
m − 1

dt .

These can be used to predict the effects of changing ensemble
size and to compare ensembles of different sizes.
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Comparing forecasts of different events needs care
Proper scores tend to converge to the score for perfect
forecasts as the predicted event becomes rarer.

Example: The long-run mean Brier score for climatological
forecasts, p, is p(1− p). This converges to 0 as p → 0.

So we may need a lot of data to distinguish good forecasts.

This may not mean that forecasts of rarer events are better than
forecasts of common events.

Use skill scores (the proportion of the maximum possible
improvement over the reference forecast that is achieved) to
compare forecasts of different events.

Example: Brier skill score = 1− BS/BSref.
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Summary
Use proper scores to rank probability forecasts.

Avoid calculating scores for only extreme outcomes.

Use weighted scores to focus on extreme outcomes.

Use (weighted) fair scores to rank ensemble forecasts.

Adjust scores to account for different ensemble sizes.

Avoid misinterpreting ‘better’ scores for rare events.
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