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Program

Preamble- “All history is lies agreed upon”
Attributed to Napolean

Act | - Forming the Question (1949-1960)

Act Il -The Question becomes important
(1960-1969)

Act IlI-Resolving the Question (1970-1982)
Epilogue: What’s next?



* Also, these lines were published in QJRMS:

V. The Ultimate Limitations of Weather
Forecasting

1949 -1960

for such a system? Suppose we attempt to
formulate the problem as one of determining
a final (forecast) state from a given initial one.
The initial state is in practice “‘given”’ only
within a certain margin of error. For con-
creteness let us consider pressure at a given
point, known within a margin dp. Let &, be
the maximum growth-rate of unstable disturb-
ances of the system. Then in the final (fore-
cast) state we can guarantee pressure correct
only within a margin dp . ¢%* since distur-
bances below the margin of error initially
(and therefore completely unknown) will have
attained this size. It is clear that “‘guaranteed”

1949 First successful Numerical Weather ‘Prediction’

Who was this
Prophet?



This is the title and Author

Long Waves and Cyclone Waves

By E. T. EADY, Imperial College of Science, London
(Manuscript received 28 Febr. 1940)

The Abstract concludes with...

system. The characteristic disturbances (forms of breakdown) of certain types of initial
system (approximating to those observed in practice) are identified as the ideal forms of
the observed cyclone waves and long waves of middle and high latitudes. The implica-
tions regarding the ultimate limitations of weather forccasting are discussed.



By 1956 operational NWP was being
done by the JNWP in the US

Uncertainty of Initial State as a Factor in the Predictability
of Large Scale Atmospheric Flow Patterns

By PHILIP DUNCAN THOMPSON, Lt. Colonel, U. S. Air Force, Joint Numerical Weather Prediction
Unit, Washington, D.C.

(Manuscript received February s, 1957)

Abstract

This article deals with the predictability of the atmosphere or, more exactly, with the gradual
growth of “inherent’” errors of prediction, due to errors in an initial state that is reconstructed
from'measurements at a finite number of points. By investigating the initial time-derivatives of
the error arising from random analysis error, it is found that the increase of the RMS (root-mean-
square) wind error in predictions over periods of a few days depends on:

1) the period of the forecast

2) the initial RMS vector wind error

3) the difference between the characteristic scale of the initial error field and the scale of

fluctuations in the true initial low pattern

4) the area average of the vertical wind shear between 250 and 750 mb

5) the RMS vector deviation of the wind at about 500 mb from its area average and

6) the average static stability of the atmosphere.



PDT noticed poorer forecasts
if Obs from Ship 'P’ not received
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E= error KE. Thompson uses characteristic
Length scales for the true and error fields .

He then uses a Fjgrtoft-like constraint to
analyze error growth in 2D and QG model



Fiprtoft constraint in QG turbulence

q, +J(W,Q):O,
g=Vy+(f /N )W, =Ly

Figrtoft Constraints

Total Energy E = —J. (wLw)dV

Pot. Enstrophy EN = J(L W) dV \ €1 N
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to small scale



1960’s

* Lorenz studies Deterministic Nonperiodic Flow
as a paradigm of NWP

Deterministic Nonperiodic Flow®

EpwarD N. Lorenz

Massachusetts Institule of Technology
(Manuscript received 18 November 1962, in revised form 7 January 1963)

X= ~oX+aV, (25)
V= —XZ4rX—7, (26)
Z'= XV —bZ. 27)



Lorenz '63 a landmark study for
several reasons

e Demonstrated ‘chaos’ in
a small finite
dimensional system

 Complete rigorous
dynamical systems
analysis (Birkhoff)

* Convincing
demonstration of Eady’s
conjecture of persistent
instability




GARP and two week predictability

Joseph Smagorinsky

FOUR-DIMENSIONAL DATA ASSIMILATION
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A controversy brews

* Lorenzin ‘63 published results from a 28 variable model:
e Starts wondering about ‘turbulence’ predictability

Reprinted from Transactions of Tha New York Academy of Sciences
Ser, I7, Volume 25, No, 4, Pages 409-432
February 1963

16
/_ THE PREDICTABILITY OF HYDRODYNAMIC FLOW*{

Edward N. Lorenz .
s '® . Massachusetts Institute of Technology, Cambridge, Mass.

the results of this numerical study are at all applicable to the at-
mosphere, they suggest a wide discrepancy between practical
predictability and attajnable predictability at ranges up to one
week. Good forecasts several days in advance do not seem to be
10 ' prevented simply by current errors in measurement. If, however,
we are genuinely interested in forecasting a few weeks in ad-
vance, we should give serious consideration to -enlarging our
network of observing stations, particularly over the oceans. :
Perthaps these conclusions are too optimistic. The real at-
mosphere possesses significant fluctuations of shorter period than
any which occur in the numerical model. Maybe what we have
called one week in the model is more like two or three days in the

omplification

real atmosphere. If this is so, we have already reached the max-
imum range which present errors in measurement will allow.

O

- o doys 16

FIGURE 6. Mean amplification factors for small random errors dur-
ing a particular 64-duy interval. Curves labeled 2,4,8, and 16 irdicate
amplifications during successive 2-,4-,8-, and 16-day periods.



The predictability of a flow which possesses many

scales of motion
By EDWARD N. LORENZ, Massachusetts Institute of Technology:

* Lorenz develops a closure for 2-dimensional
homogeneous turbulence and uses it for the

energy of the error

(V') ot = —J(y, Vi) —J(e’, V3yp),

@x
Zy = f Z(K)d(log K),

CriZ,.
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d'Z,/dt" =

n
=

Zy = Z(to) cosh Jyft —t,)

40000 -
00
625

5
0

20000
10000
5000

s

Error growth ends when Z,
reaches the Initial spectrum



Some current projects for global meteorological
observation and experiment

By G. D. ROBINSON, Ph.D., F.Inst.P.

du u
|“a|-’<»—yz

K ~ LU/B.

and find

The rate of dissipation of the energy of the large-scale motion is

so that
3

e=§% and K = (3) § ¢t L1,

In the atmosphere we may be fairly confident that the frictional dissipation of kinetic
energy lies between 1 and 10 cm? sec™ (we can established this from the observed radia-
tion field without appeal to details of atmospheric motion). On our assumptions these
are limiting values of ¢, so that

015 Lt < K< 0-3 Lt

which we may compare with L. F. Richardson's (1926) finding of

YV A nnTt

TABLE 1. VELOCITY, DIFFUSIVITY COEFFICIENT, AND PREDICTABILITY TIME APPROPRIATE TO
VARIOUS SCALES OF MOTION AND DISSIPATION RATES

Scale length Dissipation rate Diffusivity Velocity Predictability time
Lcem € cm? sec™? K em? sec™ U e¢m sec™ T sec
5 % 108 10 12 x 10t 10 x 10° 26 x 10°
1 58 x 1010 9-4 X 10? 54 x 10°
5 x 107 10 58 x 10° 94 x 10% 54 x 10*
1 27 x 10* 42 x 102 12 x 10°
5 % 108 10 27 x 108 42 x 102 1.2 x 10*
1 12 x 108 2:0 x 102 25 x 10*
5% 108 10 1-2 x 107 2:0 x 10% 2:5 x 10%

1 58 x 106 9-2 x 10! 54 % 10°



Given Kraichnan’s 2D Turbulence
Robinson and Lorenz reconsider

Inertial Ranges in Two-Dimensional Turbulence

RoBERT H. KRAICHNAN

Two-dimensional turbulence has both kinetic energy and mean-square vorticity as inviscid constants
of motion. Consequently it admits two formal inertial ranges, E(k) ~ &3k~55 and E(k) ~ 5/%3,
where e is the rate of cascade of kinetic energy per unit mass, » is the rate of cascade of mean-square
vorticity, and the kinetic energy per unit mass is [(®E(k) dk. The —3$ range is found to entail
backward energy cascade, from higher to lower wavenumbers k, together with zero-vorticity flow.
The‘ -:‘3 range g_ivcs: an upwa.srd vorticity flow and zero-energy flow. The paradox in these resulis is

The predictability of a dissipative flow

By G. D. ROBINSON
The Center for the Environment and Man, Inc., Hartford, Connecticut

constraining spectrum which is not an intrinsic property of the basic flow studied. Lorenz,
for example, concludes that a flow constrained by a spectrum of type

KE = constant [™®, |n| =3

is inherently predictable in that indefinite reduction of the initial error indefinitely increases
the predictability time. He also finds that in unpredictable flows, the predictability time
varies with the total energy of the flow.



What is the KE spectrum of the
atmosphere?

Pinus et al used by Lorenz
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Fic. 1. Kinetic energy spectra, S00 mb, SON, for the winter
season (data sets Tw and ITw, Table 1) plotted on a full logarithmic
scale. Shown are the sgpectral estimates using data from all
Iongitudes and for a 180" segment from 120W o 60E. For purposes
of comparison all estimates have been standardized by division
by the estimate for wavenumber 6,



1970’s :
Leith and Kraichnan

Atmospheric Predictability and Two-Dimensional Turbulence ‘

C. E. Lemrs
National Center for Atmospheric Research,! Bouwlder, Colo. 102 = T T T
* Chuck Leith uses Kraichnan  pjanetary
DIA-like EDQNM closure Waves
Predictable
The sccond-moment equation reduces to =
£ oo . For 2 weeks £
[/ di-4=2uk*— 2ae(k) JU (e 1) = S (k1) 5
=2 [ dpD{b,p) B )
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I16. 6. Error energy spectra (rad? day?) for ke=128 and v=0.8
labelled by days after observation with random error (dashed),
alias error (solid), and no error (dotted) for k <k



KINETIC ENERGY

Steep (K3) Spectral Slope

Does spectal slope really matter?
Bartello-Warn 1D turbulence model

Shallow (K/3 )Spectral Slope

KE(n)_steep KEIn)_shallow
-3

L B S A

Non-local Cascade



Stochastic Dynamic Prediction:
A formalism for probabilistic NWP

e EdE D stein Stochastic dynamic prediction

By EDWARD 8. EPSTEIN, University of Michigan, Dept. of Meteorolog,
and Oceanography, Ann Arbor, Mich23

By= 2 Ay @y a— 2 by s+ €4
Fundamentally, S k !

Classical statistical where
Moment prediction
Need to close the

system py= ,Zkam en— 2 bynyte

2: a,mx‘x,xk-:() and Z b”:r,x,;‘»‘o
ik i.4

= ’Zk“m:(l‘; My + Oge) — ; byypy+ ey

- . : _— 4 oan and
Stochastic dynamie predictions have significantly smaller mean square errors than

deterministic procedures, and also give specific information on the nature and extent o — B "
of the uncertainty of the forecast. Also the range of time over which useful forecasts can 0y =Hl ,‘Z, (@ 2y 25, + Ay 25 2 )]

be obtained is extended. However, they also require considerably more extensive cal-

culations. — 2 (b0 + by o) + Cops + S5y
k

Closure not the biggest problem

Closure assumption
2"d moment prediction is order N2

EZI (Gies Ty + By Tyieg) = 0



Leith suggests a practical method for
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Stochastic Dynamic Prediction

Theoretical Skill of Monte Carlo Forecasts

C. E. Leirn

National Center for Abmospheric Research,' Boulder, Colo. 80302

We conclude in general that a Monte Carlo fore-
casting procedure represents a practical, computable
approximation to the stochastic dynamic forecasts
proposed by Epstein (1969). Adequate accuracy should
be obtained for the best mean estimate of the forecast
field with sample sizes as small as 8. Improvement in
skill is appreciable for Monte Carlo forecasts as com-
pared to conventional single forecasts although much
of this improvement comes from the filtered nature
of the forecasts and is obtainable with a linear regres-
sion step applied to a single forecast.

The question of what sample size is adequate for
the detailed determination of forecast error needed
for optimal data assimilation has not been decided
by the present theoretical study and will require ex-
periments with real data applications of the Monte
Carlo procedure. Such experiments are planned using
a spectral barotropic model applied to forecasts of the
500-mb height field.



Surprising: A Note on Predictability

STANLEY J. Jacoss

Dept. of Meteorology and Oceanography, and Dept. of Engineering Mechanics,

T'he University of Michigan, Ann Arbor 48104

1. Introduction

The problem of predictability involves forecasting the
future state of a physical system given imperfect
knowledge of the initial state. For meteorological pur-
poses this consists of finding a vector z;(¢),1=1,2, ... N,
satisfying the system

gi=2. aw+_2k bijrzszitqi(t), (1)
J Js

and the initial condition
25(0) - C{+h;, (2)

where ¢; is a best estimate of the initial value and k; is
an error term, in general unknown. The forecast z,°(¢)
solves (1) with initial condition 2%0)=¢;. Assuming
that the reduction of the hydrodynamic equations to
the form (1) and the numerical integration procedure
for computing z,° do not involve appreciable errors, the
forecast is accurate if

2i=2s—2 (3)
is small in some sense.

2. Error estimates

Let x(f) and h be the column vectors whose com-
ponents are x;(¢) and k;. Substitution of (3) into (1)
leads to the vector equation

x=A(Dx+1(x), x(0)=h, (4)
where the matrix A and vector f have components
Ay=ai;+2 (bisetbus)z(0), (Sa)
k
(5b)

f.' =Z b.-,'gx,xk.
ok

Since x is a polynomial in %, the solution x(f) is unique,

and is a continuous function of h. Therefore, h=0

implies x=0, and |h|<e implies |x(¢0)| £%, for any

constant k>¢, at least in some time interval 0<¢

L T(k,e). We will seek an upper bound for |x(f)| and a

lower bound for T, given the upper bound e for |h/.
The norm for a vector y is defined to be

|yl =(y"Fy), (6)
where F is a constant positive definite symmetric matrix
and y7 is the transpose of y. This is a convenient norm,
since it allows us to weight the components of x differ-
ently. Letr=|x({)|. Then

F=r Yx"[3(FA+ATF) ]x+x7Fi(x)}), r(0)<e. (7)

Now, for any vector y,

y'[3(FA+ATF)]y<a()y"Fy, (8)
where «(f) is the largest eigenvalue of 3(A+4F-TATF).

Hence,
#< a()r+[xTFi(x)]/ (x7Fx)t, ©)



Finally, a predictability study with at
real forecast model

Ed Lorenz, of course -

Made possible only e

because of ECMWF ,
forecast archive policy L
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Demonstrated how go L/
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Fig. 1. Global root-mean-square 500-mb height dif-
ferences E,, in meters, between j-day and k-day forecasts
made by the ECMWF operational model for the same
day, for j < k, plotted against k. Values of (j,k) are
shown beside some of the points. Heavy curve connects
values of E,. Thin curves connect values of Ej for
constant X — j.
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Epilogue

These predictability studies opened the agenda for ECMWF

* First showing that it was, in principle, possible
to predict the weather beyond a few days

* Then, opening the field of dynamical
probabilistic forecasting

* Finally, pointing the way to practical solutions
to the prediction of the mean and covariance
leading to ensemble predictions and singular
vector initial uncertainty sampling



