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Ed Lorenz (1963, 1965) started it all,
with the “limits of predictability”

* |t gave impetus to the new science of chaos.

* The realization that the chaotic behavior of
the atmosphere requires replacing
“deterministic forecasts” with “ensemble
forecasts” with perturbed initial conditions
(and models).

* This led to the introduction of operational
ensemble forecasting in December 1992 at
both ECMWF and NCEP.



Transparencies from Lorenz in a 2006
workshop in Tallahasse, when he was 89.
(courtesy of M. Zupanski)
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Stochastic-dynamic forecasting

Epstein (1969) introduced stochastic-dynamic
forecasting, derived continuity equation for
probability density @ : aa—erVD.(Xgo):O

“no ensemble member can be created or

destroyed”.
Tested it with Lorenz (1963). It worked but...

It was far too expensive: he developed a “true”
probability density @ with 500 L63 members and

then tested his approximation of @



Monte Carlo Forecasting (Leith, 1974)

e Leith proposed ensemble forecasting with m
members instead of the single (deterministic)

forecast.
* Why? He predicted the anomaly wrt climatology

u, : true state of the atmospheric anomaly

u : forecast prediction of the atmospheric anomaly
T T . .
[(0—u, )(0—u ) ]=[u,u, ]=U error of climatological forecast

A ~ TV_1aaT T AT ATy -
[(u—u )J(u-u ) |=[ua +uu —uu —uu |=2U twice the error!



Monte Carlo forecasting (Leith, cont.)

A single long forecast asymptotes to twice the error of forecasting
climatology.

Regressing towards climatology is expensive and complicated:
A=[a"u] '[u"u ] regression matrix: huge!

Leith proposed instead an ensemble of m forecasts:

The mean forecast error at long times goes to

. _ _ 1 . .
lim [(u—uo)(u—uO)T] =| 1+— |U without regression!
t—oo m

Leith suggested m=8 would be enough to make a good estimate of the
mean, but the estimation of forecast errors would require many more
members

Epstein used m=0(1000), Leith suggested m=8 may be enough!



Lagged Average Forecasting
Hoffman and Kalnay, 1983
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Use the forecasts already available in operations!



LAF testing

* Nature Model: 2-layer PE spectral model

* Forecast model: QG model (not identical twins)
 Compared ODF (single forecasts), MCF, LAF, N=8

Ensembles all hedge
towards climatology
ODF, MCF, LAF were
all also “tempered”

towards climatology



LAF - Results
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LAF RESULTS (prediction of skill)
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Fig. 8. Scatter plots of predicted versus observed time for D to reach a value of 0.5 for the LAF (a) and the MCF (b).

LAF was significantly better than MCF in
predicting the time for D=0.5, at the maximum growth
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Fig. 8. Scatter plots of predicted versus observed time for D to reach a value of 0.5 for the LAF (a) and the MCF (b).

LAF was significantly better than MCF in

predicting the time for D=0.5, maximum growth

Why?



LAF RESULTS (prediction of skill)
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Fig. 8. Scatter plots of predicted versus observed time for D to reach a value of 0.5 for the LAF (a) and the MCF (b).

LAF was significantly better than MCF in
predicting the time for D=0.5, maximum growth

| think because LAF knows about the “errors of the day”!

Why?



SLAF, Ebisuzaki and Kalnay, 1991

e Disadvantages of LAF:
— “Older” forecasts dominate the error average;
— they should be given less weight.
— LAF does not sample +/- errors

e Scaled LAF (SLAF):

— Divide the forecast errors by the difference between the
analysis and the forecasts started at t=—jAt, by j

— This reduces by half the needed length of the forecasts,
and reduces the amplitude of the “older errors”
assuming linear growth.

— Experimental results were clearly better than LAF. Easy
to implement BCs on regional models (Hou et al., 2001)



“Good” and “Bad” Ensembles

An ensemble forecast starts from initial perturbations to the analysis...

In a good ensemble “truth” looks like an member of the ensemble
(Toth, 1992)

The initial perturbations should reflect the analysis “errors of the day”
A bad ensemble is still useful (implies there is a bug in the system)
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Forecasting Forecast Skill

Tennekes et al (1986): “No forecast is complete without a
forecast of forecast skill”

e Gronaas (1983): Pilot study on prediction of medium range
forecast quality. ECMWEF Tech. Memo.

* Kalnay and Dalcher (1987): “Forecasting forecast skill”
 Wobus & Kalnay (1995): 3 years of operational fcsting skill
 Palmer & Tibaldi (1988)... On the Prediction of fcst skill
 Molteni & Palmer (1991): A realtime scheme pred fcst skill

* Arribas et al., (2004): A Poor woman EPS (PEPS competitive!]
e Basic assumption: Ensemble agreement <~ forecast skill



3 years of Operational Prediction of Fcst Skill
Wobus and Kalnay, 1995

* Barker (1991) had used a perfect model, 100 member
ensemble experiments with discouraging results: the
correlation between ensemble spread and fcst rms
errors was 0.0 at t=0, and only 0.35 after one day 1, and
was (.35-.55) in the first 10 days.

At NCEP we started in 1988 to explore using other
operational forecasts (ECMWEF, UKMO, JMA) that we
received routinely. The medium range run at NCEP
started at 00Z, and at the other 3 centers at 12Z. So we
forecasted from 127 using 12hr older forecasts, plus an
NCEP average fcst from today and yesterday at 00z, i.e.,
the mean of four 5.5 days forecasts from 12Z.




Method

 Multiple regression, 60 days training, computed
daily for each 30x60 region and each forecast
length, with 3 predictors and one predictand, the
MRF at 127:

1) Fcst Agreement (AGR): Regional AC between MRF
fcst, and each of the other 4 forecasts, averaged.

2) Fcst RMS Anomaly Amplitude (RMSA)

3) Fcst persistence (PERS): Regional AC between MRF
and initial MRF analysis.

AGR is selected ~95%, RMSA ~70%, PERS ~45%
60 days of training; fcsts for 0.5 days to 5.5 days



JuLy 1995

WOBUS AND KALNAY

1.0 .
0-8" f%
0.6 1 g
E 04| N America 3.5days: rho=0.735
021 predicted AC N11: North America
N sessssessscnssssenss vo'"ylng Ac pa-.s g..%yass
0.0 T T T T ) | L) ! \
10 20 30 40 60 70 80 90

day of March-April-May 1993

anomaly correlation

941 Japan 3.5days: rho=0.723

0.24 predicted AC NO: Japen
. 3.5 days
.................... venfying AC p= 0723
0.0 T e R S ' Y YT W
10 20 30 40 S50 60 70 80 90

day of March-April-May 1993

1.0

041 Europe 3.5days: rho=0.481 [
0.24 predicted AC N7: Europe
3.5 days )
.................... verifying AC p = 0.481
008 % 4 % 6 70 60 9
day of March-April-May 1993

'..‘:
Africa 3.5days: rho=0.724

0.4
0.24 |
. ooedsied A N1: Africa
. 3.5 days
................... verifying AC p= 0724
0.0 . T T T L \J -
10 20 30 40 6 70 8% %
day of March-April-May 1993
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How do these results compare with our current ensembles?

Should we combine them?




Have you ever seen a Lyapunov
Vector in an NWP model?

| had never even heard of LVs until after Zoltan and |
invented breeding.

| thought BVs were similar to SV, until Zoltan made an
error (factor of 4) in defining KE, and then we found
that BVs, like leading LVs, were independent of the
norm!

Then we discovered with different space and time
scales BVs could capture different types of instabilities.
(Pefa and Kalnay 2004).

Talagrand told us that there is a single global fastest
growing LV (Ocedelec theorem). But | didn’t believe it:
it didn’t seem to make sense.



Adrienne Norwood’s thesis (1)

She computed BVs, SVs and LVs for the Lorenz (1963)
model and for the toy coupled ocean-atmosphere model (9
variables) and compared them, using Wolff and Samelson’s
method to obtain the LVs from the SVs.

One discovery was that BV did not stick to LV1! Whenever
LV2 grew faster than LV1, the BVs joined LV2, and only
returned, when LV1 grew faster.

Similar to BV capturing fastest growing instabilities in
different parts of the world.

She then computed the BVs for a QG model. It was easy to
get the leading LV from breeding because the QG model
has a single type of instabilities.

But with her computer resources she couldn’t get the SVs
to converge, and thus get a complete set of LVs.



Adrienne Norwood’s thesis (2)

 She then used the SPEEDY model, a realistic GCM
with all types of waves and instabilities (e.g.,
baroclinic waves, inertia Lamb waves, convection).

 We were hoping to find the leading LV with
breeding... but BVs did not converge: In regions of
baroclinic instability different BVs would lie on top
of each other in unstable regions, (asin T and K,
1997) and Patil et al (2006), but not globally.

* So we chose the smallest time scale possible, a time
step (40 minutes) and a wind scale very small:
1mm/sec! And then...



What happened with SPEEDY?

* Five BVs were computed. With an amplitude of 1 m/s
and integration window of 24 hours, this BV targets
baroclinic instabilities, stronger in the winter
hemisphere than in the summer hemisphere.

* They do NOT converge to a leading LV!

* But, as in Toth and Kalnay, 1997 and Patil et al., 2001, in
regions of baroclinic instability, the BVs tend to locally
align with each other, with low E-dimension.

SURF: U(amp 1) 24HR BV 1&2 00ZFEB28

SURF: U(amp 1) 24HR BV DIMENSION 00ZFEB28
= =

Two different
BVs on top of
one another.




SPEEDY with very small amplitudes
and very small rescaling intervals

If we take a very small amplitude (1 mm/s) and the shortest rescaling
window (40 minutes), we obtain a leading LV corresponding to a
global Lamb Wave probably triggered by convection in the Warm
Pool. It is forced by convective instabilities, with a signal that
propagates globally through Lamb waves (horizontal sound waves).

This is the first time a global leading LV has been found for a full
atmospheric model!

But it mav be useless for the creation of ensemble members.
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SPEEDY global LV

The leading Lyapunov Vector is not stationary. It is
forced by deep convection, but the 5 BV are identical!

SURF: U(amp .001) 40MIN BV 1&2 22:40ZJANOR

SURF: U(amp .001) 40MIN BV 1&2 23:20ZJANO2

SURF: U(amp .001) 40MIN BV 1&2 00ZJANO3

-0.02 -0.015 -0.01 -0.005 0 0005 001 0015 -0.015 -0.01 -0.005 0 0,005 0.01 0015 -0.015 -0.01 -0.005 0 0005 0.01 0015
SURF: U(amp .001) 40MIN BV DIMENSION 22:402JAN02 SURF: U(amp .001) 40MIN BV DIMENSION 23:20ZJANO2 SURF: U(amp .001) 40MIN BV DIMENSION 00ZJANO3

- - -

- - -

B B R

5 s s

- us s

; i o o e ' : s o e ! : i o o . !

T T R B R T R O T T R



SPEEDY Conclusions (Norwood)

BVs can target different modes of growth within the model:
baroclinic, and external gravity waves forced by convection.

If we rescale the BV at the shortest possible At, and a very small
amplitude, we can construct LVs, and they converge to the fastest
growing LV.

There is a leading global LV, as “promised” by Oseledec’s Theorem
(1968), found through the use of global BVs.

This is the first time a LLV has been seen in a full atmospheric model.

BVs associated with baroclinic and convective instabilities do not
converge to a single vector because there is no leading global LV
associated with these types of instabilities.

Are these observations relevant to operational NWP models?



The GFS assimilating GOES-15 11um brightness temperature
generates a leading Lyapunov Vector just like the SPEEDY model!
(Courtesy of Cheng Da, Fuging Zhang)

Why? Because

“Data Assimilation is
like Breeding”.

The Oseledec theorem
“promises” that there
is a global Leading
Lyapunov Vector!
The LLV does exist
when you do data
assimilation, but it is
totally irrelevant!
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As found by Adrienne Norwood, with the SPEEDY model,
global leading LV are generated by doing DA (~ breeding),
and triggered by tropical convective cells. Again, global
leading Lyapunov Vectors exist, but are irrelevant!
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As found by Adrienne Norwood, with the SPEEDY model,
global leading LV are generated by doing DA (~ breeding),
and triggered by tropical convective cells. Again, global

leading Lyapunov Vectors exist, but are irrelevant!

THANKS!!




