

805

 An OpenACC GPU

adaptation of the IFS cloud

microphysics scheme

Huadong Xiao1, Michail Diamantakis

and Sami Saarinen

Research Department

1Visiting Scientist, National Meteorological Information Center,

China Meteorological Administration (CMA)

June 2017

Series: ECMWF Technical Memoranda

A full list of ECMWF Publications can be found on our web site under:

http://www.ecmwf.int/en/research/publications

Contact: library@ecmwf.int

© Copyright 2017

European Centre for Medium Range Weather Forecasts

Shinfield Park, Reading, Berkshire RG2 9AX, England

Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to

be reprinted or translated in whole or in part without the written permission of the Director. Appropriate non-

commercial use will normally be granted under the condition that reference is made to ECMWF.

The information within this publication is given in good faith and considered to be true, but ECMWF accepts

no liability for error, omission and for loss or damage arising from its use.

http://www.ecmwf.int/en/research/publications

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 1

Abstract

The ECMWF Integrated Forecast System (IFS) cloud microphysics scheme has been adapted for a

GPU architecture. Hybrid OpenMP and OpenACC within a single node, hybrid MPI and OpenACC

over multiple nodes as well as different algorithmic and code optimization methods were employed

to study the performance impact. The roofline model was used to conduct a performance analysis

and the CLAW compiler has been explored as a tool for automatic code adaptation. For a very large

number of grid columns, the double precision performance of the 4 GK210 GPUs of a single node

was slightly better than the performance of two 12-core CPUs (contained in the node) in terms of

the total run rime. However, without taking into account the GPU data transfer and other overheads,

the actual calculation time for the same large size problem was reduced to approximately one quarter

of the CPU time giving a speed up factor of 4. Comparing the performance of a single GPU with a

single CPU, the obtained speed up factor is approximately 2. A further 40% gain can be achieved

with single precision. The obtained GPU speed up factor depends a lot on the workload given to a

GPU; for small or moderate size problems (number of grid columns) the above mentioned speed up

factors cannot be achieved.

1 Introduction

The cloud microphysics scheme is one of the most computationally expensive parts in the IFS model

(Saarinen, 2014, 2015). Computation of the cloud scheme (CLOUDSC) is dependent only in the vertical

direction (column mode). When a high resolution model runs on a parallel supercomputer a very large

number of grid point columns, allocated in groups of separate MPI tasks, can be processed

simultaneously. GPUs can be used in order to accelerate further this calculation. GPUs are attractive

due to their low energy to performance ratio being one of the most energy efficient architectures as

indicated by “The Green 500” supercomputer list: https://www.top500.org/green500/. The question is

if this can be exploited in a time-critical application such as the global weather prediction system of

ECMWF.

The CLOUDSC routine was ported and tested on the LXG GPU test cluster of ECMWF which runs on

SUSE Linux Enterprise Server 11 SP4 and consists of 34 nodes. Each compute node of this cluster

contains two Intel Xeon E5-2690v3 (Haswell) CPU sockets with 12 cores per socket and 2 NVIDIA

K80 cards with 2 GK210 GPUs per card. The configuration of each compute node is shown in Table 1.

The compiler and its flags used were given in Table 2.

Different GPU adaptation approaches have been tried for CLOUDSC. A combination of OpenMP with

OpenACC programming was first tested followed by a hybrid MPI and OpenACC programming

approach. At the same time, different optimization methods were employed to improve computing

performance, for example:

1. Hoisting local arrays with global ones.

2. Algorithm adjustment to utilize batched CUBLAS library.

3. Changes of water species sorting method.

4. Other GPU-related tuning methods such as loop interchange.

5. Single precision computation.

 Adaptation of CLOUDSC to GPU platform with OpenACC

2 Technical Memorandum No.805

Table 1. Configuration of a node in LXG cluster

Type Sockets

(SM)

Cores/CPU Cache(MB)

Mem(GB)

Processor type

CPU(Haswell) 2 12 30

128

Intel Xeon E5-2690 v3 @

2.60GHz AVX2 (Haswell)

GPU(2K80) (26) 4992 SP

1664 DP

3.0

24

Tesla K80 3.7 @ 823 MHz

(Mem 2505MHz) CUDA 8.0

Table 2. Compiler and its flags used in the experiment

Node Type Compiler Compiler flags used

Dell CPU PGI 16.7 -O3 -fast -Minfo -mp=bind,allcores,numa -Ktrap=fp -

Mbyteswapio -Kieee -Mdaz -Mfprelaxed

 GPU PGI 16.7 -O3 –fast -acc -Minfo -ta=nvidia:7.5,kepler -tp=haswell

-Mvect=simd:256 -mp=bind, -mp=bind,allcores,numa -

Mbyteswapio -Ktrap=fp -Kieee -Mdaz

In section 2, we give a brief introduction to IFS cloud scheme. In section 3, we summarize performance

results of CLOUDSC for CPUs compared with GPUs. In section 4 the OpenACC parallelization method

is described. In section 5 detailed results and comparisons are given and in section 6 we report our

conclusions. Three appendices are included in the report showing: (i) detailed results with respect to the

sensitivity with blocking size NPROMA (ii) summarising preliminary experience with the code

adaptation tool CLAW and (iii) finally performance analysis of a roofline model.

2 The IFS cloud scheme

The IFS cloud scheme is a parametrization of cloud processes for prognostic cloud. It is a multi-species

prognostic microphysics scheme, with 5 prognostic equations for water vapour, cloud liquid water, rain,

cloud ice and snow. The equation governing each prognostic cloud variable within the cloud scheme is

𝜕𝑞𝑥

𝜕𝑡
= 𝐴𝑥 +

1

𝜌

𝜕

𝜕𝑧
(𝜌𝑉𝑥𝑞𝑥) (1)

where, 𝑞𝑥 is the specific water content for category x (so x = 1 represents cloud liquid, x = 2 for rain,

and so on), 𝐴𝑥 is the net source or sink of 𝑞𝑥 through microphysical processes, and the last term

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 3

represents the sedimentation of 𝑞𝑥 with fall speed 𝑉𝑥 (for details see Forbes et al., 2011; Forbes and

Ahlgrimm, 2012). A schematic of the IFS cloud scheme is given Figure 1.

Figure 1. Schematic of the IFS cloud scheme (from Forbes et al, 2011).

The five prognostic equations for the individual species are solved using a simple forward-in-time,

implicit solver approach. The solution to this set of equations uses the upstream approach, which utilizes

the forward difference quotient in time and the backward difference quotient in space (ECMWF, 2017).

In the scheme, after calculating initial input profiles and initial setup, the sources and sinks variables are

calculated, followed by the precipitation processes and numerical solvers, then tendencies of all the

thermodynamic quantities updated, and finally the calculated flux for diagnostics and budget terms.

3 Performance comparison: CPU versus GPU

Testing showed that the total run time of a compute node with 4 GPUs is 11% less than the total run

time of a compute node with 2 CPUs (with 24 cores each) for a large size problem in double precision.

Furthermore, without taking into account the GPU data transfer and other overheads, the actual

calculation time, for the same large size problem, is reduced to approximately a quarter of the CPU time

i.e. a speed up factor of 4. Comparing the performance of a single GPU with a single CPU, the obtained

speed up factor is approximately 2. The detailed results of computation with double precision for

160,000 and 320,000 grid columns using OpenMP and OpenACC directives are given in Table 3. The

chosen NPROMA corresponds to the optimal setting for the given number of threads and GPUs.

Assigning 320,000 grid columns per GPU node gives a performance near the peak. The highest number

of grid columns that can be used in a single LXG node is 1,280,000 – our tests indicated that performance

peaked at this number of columns (not shown here). Although this performance may be optimal for a

GPU, using such a large number of columns is unrealistic for a NWP forecast which should be completed

in a relatively short time of the order of 1 hour. Therefore, we will not expand further on these results

and we will use the more modest but rather large set up of 160,000 grid columns.

https://www.ecmwf.int/search/elibrary?authors=M.%20Ahlgrimm

 Adaptation of CLOUDSC to GPU platform with OpenACC

4 Technical Memorandum No.805

Table 3. Time and Gflops/s on CPU and GPU platform for different number of OpenMP threads, GPUs,

NPROMA and grid columns with double precision (here speedup is defined as the ratio of the CPU total

run time of a single CPU with 12 cores to that of two CPUs with 24 cores or the GPU actual calculation

time).

Grid

columns

OpenMP

Threads

GPUs NPROMA Time(ms) Gflops/s Speedup

Calculation Overhead Total

160000 12 - 48 2105 9.48 1

24 - 12 1286 15.53 1.63

1 1 80000 1037 2507 3545 5.63 2.02

2 2 80000 555 1529 2086 9.57 3.79

4 4 40000 376 799 1174 17.00 5.59

320000 12 - 48 4127 9.68 1

24 - 12 2470 16.17 1.67

1 1 80000 2056 4999 7057 5.66 2.00

2 2 80000 1064 3126 4192 9.54 3.87

4 4 80000 641 1560 2193 18.20 6.43

It is worth mentioning that when the number of NPROMA-block was increased, the GPU calculation

time reduced remarkably. Generally, the GPU calculation time is the shortest when NPROMA-block is

set up to 80,000 which is the number giving the best fitting in GPU’s memory for NVIDIA K80 GPU.

The computational performance of CLOUDSC is also sensitive to the number of NPROMA-blocks. In

most cases, the computational performance of CLOUDSC on CPUs with 12 or 24 OpenMP threads is

optimum when NPROMA is between 12 and 128 (see Appendix A).

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 5

Figure 2. Comparison of CPU total run time, GPU calculation time, and GPU overhead time for grid columns

of 160000(left) and 320000(right)

Figure 3. Comparison of performance and total run time on CPUs and GPUs for grid columns of

160000(left) and 320000(right)

4 Parallelization with OpenACC directives

4.1 Implementation

A simple shell script was written to insert OpenACC directives like ACC KERNELS or ACC

PARALLEL in the front of code loops (see Listing 1). Furthermore, ACC COPY or ACC PRESENT

clauses have been manually added in the beginning of real computation. Through these two steps an

initial GPU based accelerated version can be obtained. Furthermore, setting a bigger NPROMA size and

runtime environment variables like buffer-size, using memory binding, and other methods like

asynchronous computing and data movement have been attempted to attain an optimized performance.

Because the current version of PGI Accelerator Compiler does not support derived type of allocated

array and pointer association operation efficiently (Norman et al., 2015), the codes using derived type

and pointer operations should be rewritten first. Following that, 38 input arrays were requested to be

copied from CPU memory to GPU memory using ACC DATA COPYIN clause, and 22 output arrays

were requested to be copied from GPU memory to CPU memory through using ACC DATA COPYOUT

clause. The array variables could be obtained through the “intent” attribute from array definition in the

 Adaptation of CLOUDSC to GPU platform with OpenACC

6 Technical Memorandum No.805

subroutine of “cloudsc”. The automatic arrays in the subroutine of “cloudsc” were assigned to GPUs

and released after the “cloudsc” call via additional ACC DATA CREATE layer.

#!/bin/bash

file=$1

sed -e 's/SUBROUTINE CLOUDSC/SUBROUTINE CLOUDSC_ACC/g' \

 -e 's/tendency_\([a-zA-Z]\+\)%\([a-zA-Z]\+\)/pstate_\2_\1/g' \

 -e '1,/START OF VERTICAL LOOP/ {

 s/^DO /\n!$ACC KERNELS\n!$acc loop\n&/g

 s/^[\t]\+DO /\n!$acc loop\n&/g

 s/^ENDDO/&\n!$ACC END KERNELS\n/g

 }' \

 -e '/END OF VERTICAL LOOP/,$ {

 s/^DO /\n!$ACC KERNELS\n!$acc loop\n&/g

 s/^[\t]\+DO /\n!$acc loop\n&/g

 s/^ENDDO/&\n!$ACC END KERNELS\n/g

 }' \

 -e '/START OF VERTICAL LOOP/,/END OF VERTICAL LOOP/ {

 s/^ DO /\n!$ACC KERNELS\n!$acc loop\n&/g

 s/^ [\t]\+DO /\n!$acc loop\n#endif\n&/g

 s/^ ENDDO/&\n!$ACC END KERNELS\n/g

 }' \

$file

Listing 1. Scripts to insert OpenACC directives

One of the most computationally expensive subroutines in the IFS model is “cuadjq” also called by the

subroutine of “cloudsc”. Fortunately just few lines of code were used and these were inlined to “cloudsc”

in order to obtain better performance.

Regarding the accuracy of results, the relative error was in the range of tolerance of machine precision

(double precision).

4.2 Optimization

In order to analyse and improve performance, the NVIDIA profiler tool of “nvprof” was used for hotspot

and bottle-neck analysis of the routine. Interchanging the JL-outer loop with the inner JM-loop index

(see Listing 2, 3 of Appendix B) reduced calculation time. In most cases, performance could be further

improved by increasing the compiler’s default vector size to improve GPU occupancy. Replacing

temporary arrays by scalar, especially 3D arrays, was also an effective way to boost performance both

in terms of calculation time and overhead. Other methods such as loop fusion to reduce computation

kernels contribute to further improvement of performance. More specifically, based on the original

implementation for implicit solver, by only changing the vector size from default 128 to 512 could

reduce by 10% the calculation time for the Gaussian elimination. Furthermore replacing a 3D array with

a scalar (see Listing 2), an additional 5% gain can be achieved.

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 7

 ! Non pivoting recursive factorization

 DO JN = 1, NCLV-1 ! number of steps

 DO JM = JN+1,NCLV ! row index

 ZQLHS(KIDIA:KFDIA,JM,JN)=ZQLHS(KIDIA:KFDIA,JM,JN)

 & / ZQLHS(KIDIA:KFDIA,JN,JN)

 DO IK=JN+1,NCLV ! column index

 DO JL=KIDIA,KFDIA

 ZQLHS(JL,JM,IK)=ZQLHS(JL,JM,IK) -

& ZQLHS(JL,JM,JN)*ZQLHS(JL,JN,IK)

 ENDDO

 ENDDO

 ENDDO

 ENDDO

 ! Backsubstitution step 1

 DO JN=2,NCLV

 DO JM = 1,JN-1

 ZQXN(KIDIA:KFDIA,JN)=ZQXN(KIDIA:KFDIA,JN) -

& ZQLHS(KIDIA:KFDIA,JN,JM)*ZQXN(KIDIA:KFDIA,JM)

 ENDDO

 ENDDO

 ! Non pivoting recursive factorization

 DO JN = 1, NCLV-1 ! number of steps

 DO JM = JN+1,NCLV ! row index

 xmult =ZQLHS(JL,JM,JN)

& / ZQLHS(KIDIA:KFDIA,JN,JN)

 DO IK=JN+1,NCLV ! column index

 ZQLHS(JL,JM,IK)=ZQLHS(JL,JM,IK) -

& xmult *ZQLHS(JL,JN,IK)

 ENDDO

 ! Backsubstitution

ZQXN(JL,JN)=ZQXN(JL,JN)- xmult * ZQXN(JL,JM)

 ENDDO

 ENDDO

Listing 2. Code segment for replacing a 3D array with a scalar (left: original, right: modified)

The solver for the microphysics consumes most of the time of the GPU CLOUDSC except for the

overhead part which includes the data movement between host and device (see Figure 4). Data

movement is the biggest contributor in the overhead. An implicit solver for many small linear systems

with Gaussian elimination method is used in the original implementation. For a matrix, LU (Lower and

Upper triangular Matrix) factorization is first done, followed by back substitution, then the final result

is obtained.

Figure 4. The computational cost distribution of GPU accelerated CLOUDSC on a single GPU with

80,000 of NPROMA-block for 160,000 grid columns.

There are a large number of small linear equation systems (5×5) that need to be solved in CLOUDSC.

Calling a batched Gaussian elimination routine from CUBLAS library was attempted to find if any

performance increase could be gained. Currently, some CUDA Fortran features (like type definition

attribute with “device” and “c_devptr”, and function of “c_devloc”) need to be used to call batched

 Adaptation of CLOUDSC to GPU platform with OpenACC

8 Technical Memorandum No.805

CUBLAS routine successfully. But the performance result is much worse than without calling CUBLAS

routine.

5 Detailed performance results and comparisons

In this section we expand the results presented in section 3, and we provide detailed comparisons for

each attempted optimization.

The results were obtained by averaging 5 separate runs using 160,000 grid columns (NGPTOT). For the

double precision version of the program, a complete list of experiments were performed, while for the

single precision version of program, two selected experiments were performed as a simple comparison

to indicate the impact. In general, the conclusion derived from computations with various grid columns

holds independently of the number of grid columns.

5.1 Results of the original CLOUDSC on CPU host

The CPU version of CLOUDSC, has been tested using different number of OpenMP threads and

NPROMA-blocks. The total run time and sustained performance (Gflops/s) for different number of CPU

threads and an optimum NPROMA-block for the number of threads are shown in table 4.

Table 4. Total run time, Gflops/s of the original CLOUDSC computation on an LXG cluster node for

different number of OpenMP threads and 160,000 grid columns. For each number of OpenMP threads

listed, the corresponding NPROMA is the one that gives the best performance.

OpenMP

threads

NPROMA Total

time(ms)

Gflops/s

1 128 19869 1.00

4 64 5305 3.76

8 64 2954 6.76

16 48 1711 11.67

24 12 1285 15.53

Irrespective to the change of number of NPROMA-blocks, the total run time was decreased when the

number of OpenMP threads was increased. Good parallel scaling efficiency is achieved which decreases

gradually as the number of threads increases.

5.2 Results of accelerated CLOUDSC on GPU

5.2.1 Hybrid OpenMP and OpenACC directives

In this section results from the version of accelerated CLOUDSC on GPU using hybrid OpenMP and

OpenACC directives are first shown, followed by another version where the original Gaussian

elimination method is replaced by calling CUBLAS library. The implementation using hybrid OpenMP

and OpenACC directives with calling CUBLAS library depends on CUDA Fortran features of device

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 9

type definition attribute of “device”, “c_devptr”, and functions of “c_devloc”,

“cudaDeviceSynchronize”, “cublasDgetrfBatched”, “cublasDgetrsBatched”.

Table 5. Time and Gflops/s of the GPU accelerated CLOUDSC computation for different number of

OpenMP threads, GPUs, NPROMA and 160,000 grid columns. The listed NPROMA is the one that gives

the shortest calculation time and biggest number of Gflops/s. Results repeated using CUBLAS library.

GPUs OpenMP

threads

NPROMA Time(ms) Gflops/s

Calculation Overhead Total

1 1 80000 1037 2507 3545 5.63

2 40000 1631 2092 3485 5.73

4 20000 1805 1981 3535 5.65

2 2 80000 555 1529 2086 9.57

4 40000 955 1242 2104 9.49

8 20000 995 1354 2182 9.15

4 4 40000 376 799 1174 17.00

4 20000 432 822 1254 15.92

CUBLAS LIBRARY RESULTS

1 1 80000 1976 2509 4486 4.45

2 40000 2535 2091 4347 4.59

4 20000 3487 1479 4577 4.36

2 2 80000 1120 1528 2648 7.54

4 40000 1522 1308 2647 7.54

8 20000 1883 1124 2821 7.08

4 4 40000 949 794 1738 11.49

4 20000 1060 810 1864 10.71

For both implementations, different number of GPUs, number of OpenMP threads and NPROMA-

blocks were chosen. Computation on each GPU is driven by one or more OpenMP threads. The GPU

calculation time, overhead time, total run time and sustained performance (Gflops/s) for different

combination of settings are shown in Table 5.

 Adaptation of CLOUDSC to GPU platform with OpenACC

10 Technical Memorandum No.805

The shortest GPU calculation time is achieved when one OpenMP thread controls one GPU for the

optimal setting of 80,000 NPROMA for a specified GPU number. When using time-sharing GPU mode

(i.e. more than one OpenMP threads drives one GPU), the GPU overhead time including data transfer

overhead is reduced, but the actual GPU calculation time is increased. And there is little difference in

the total time between using or not using GPU time-sharing. Only considering the GPU calculation time,

the performance scales very well with the increasing number of GPU.

The hybrid OpenMP and OpenACC version with calling CUBLAS library shows an apparent

degradation of performance especially in terms of GPU calculation time, when compared with the

equivalent version without CUBLAS (see Table 5). The overhead time is almost the same given that

codes changes are only applied in the computation of Gaussian elimination method.

In some of the entries of Table 5, there is a small difference between the total time and the sum of the

GPU calculation time and the GPU overhead time. This occurs when more than one thread is used to

control a GPU. The reason is that the reported time is the minimum time for each thread. Each thread

time is the average of five runs.

5.2.2 Hybrid MPI and OpenACC directives

In this section, results from the GPU adaptation with hybrid MPI and OpenACC directives is shown

first, followed by another version with hoisting of local arrays. Hoisting of local arrays means moving

the local definition of arrays in a subroutine to another module file including statements of allocatable

array definitions, allocating memory and deallocating memory. This may improve performance,

especially when a subroutine with a large number of local arrays is called several times at each execution.

Computation in each GPU is controlled by an MPI task. The GPU calculation time, time of hoisting

local arrays, overhead time, total time and sustained performance (Gflops/s) for different combination

numbers of GPUS, MPI tasks, nodes and NPROMA-blocks are demonstrated in table 6 and table 7,

respectively.

Table 6. Time and Gflops/s for the GPU CLOUDSC for 160,000 grid columns with different number of

MPI tasks, GPUs per node, nodes and an optimum NPROMA for each configuration.

MPI

tasks

GPUs

per node

Nodes NPROMA Time(ms) Gflops/s

Calculation Overhead Total

1 1 1 80000 1102 2485 3588 5.57

2 1 2 80000 562 1250 1813 11.02

2 1 80000 568 1537 2106 9.48

4 1 4 40000 319 657 977 20.47

2 2 40000 314 766 1080 18.47

4 1 40000 342 806 1143 17.49

As we can see in Tables 6, 7 when multiple MPI tasks are employed on the same node, the overhead

time is longer than the time when MPI tasks are distributed over different nodes with the same

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 11

combination of MPI tasks, GPUs and NPROMA. The possible reasons lie in two aspects. One is that

each MPI task could only use part of the whole node’s memory when several MPI tasks are executed on

the same node. The other is that the system overhead would be less when fewer MPI tasks per node are

used. The performance of hybrid MPI and OpenACC version of CLOUDSC also scales very well, much

like that of hybrid OpenMP and OpenACC version.

The impact of hoisting local arrays is small (see Table 6). With the available hardware and PGI compiler

environment, hoisting seems not an effectively optimization method for the GPU computation of

CLOUDSC.

Table 7. Time and Gflops/s of the GPU accelerated CLOUDSC computation with hoisting local arrays.

MPI

tasks

GPUs

per node

Nodes NPROMA Time(ms) Gflops/s

Calculation Hoisting Overhead Total

1 1 1 80000 1090 218 2498 3808 5.24

2 1 2 80000 557 232 1364 2151 9.29

2 1 80000 556 580 1640 2751 7.27

4 1 4 40000 338 215 693 1245 16.04

2 2 40000 338 562 873 1706 11.71

4 1 40000 348 1305 1042 2651 7.56

5.3 Single precision results

The output atmospheric parameters in single precision differ from that in double precision. The size of

the difference for some variables can be up to 1 percent with respect to their magnitude in double

precision. Larger differences can be noticed between double precision CPU results and single precision

GPU results. Two are the possible reasons. The first is that the input data used in single precision are

transformed directly from the input data provided in double precision that produced rounding off errors.

The second and perhaps more important reason is that the accelerators available today support most of

the IEEE floating-point standard but they do not support all the rounding modes and some operations.

However, the performance results in single precision could be referred.

5.3.1 Results of the original CLOUDSC on CPU

The total run time and sustained performance (Gflops/s) for different number of CPU threads and an

optimum NPROMA-block are shown in Table 8 and can be compared with Table 4. A similar conclusion

to double precision can be drawn: regardless what the number of NPROMA-blocks was, the total time

was decreased when the number of OpenMP threads was increased. Furthermore, the calculation time

was approximately reduced by one third compared with double precision.

 Adaptation of CLOUDSC to GPU platform with OpenACC

12 Technical Memorandum No.805

Table 8. Total run time, Gflops/s of original CLOUDSC computation with the best NPROMA for each

OpenMP thread setting on an LXG cluster node for 160,000 grid columns.

OpenMP

threads

NPROMA Total

time(ms)

Gflops/s

1 100 13552 1.47

4 128 3499 5.71

8 128 1959 10.19

16 64 1102 18.10

24 64 864 23.10

Figure 5. Comparison of total run time for CLOUDSC computation on a CPU node with single

precision and double precision for 160000 grid columns.

5.3.2 Results of GPU accelerated CLOUDSC with hybrid OpenMP and OpenACC

Computation on each GPU is controlled by one or more OpenMP threads. The GPU calculation time,

overhead time, total run time and sustained performance (Gflops/s) for different combination number of

GPUs, OpenMP threads and NPROMA blocks are shown in Table 9.

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 13

Table 9. Time and Gflops/s of the GPU CLOUDSC with different number of GPUs, OpenMP threads,

NPROMA and 160,000 grid columns (NPROMA=160,000 is the maximum number can be used in the

GPU version of CLOUDSC due to the memory limit of NVIDIA K80 card).

GPUs OpenMP

threads

NPROMA Time(ms) Gflops/s

Calculation Overhead Total

1 1 160000 618 1255 1875 10.65

2 80000 962 888 1851 10.79

2 2 80000 367 772 1138 17.54

4 4 40000 284 422 701 28.50

Figure 6. Comparison of time for hybrid OpenMP and OpenACC of CLOUDSC computation on a GPU

node with single precision and double precision for 160,000 grid columns.

Compared with the time in double precision, if the work load of GPUs is saturated fully, both the time

of GPU calculation and overhead in single precision reduced as the number of GPU was increased, and

the time reduced about 40%. The amplitude of GPU calculation time reduction in the computation of

GPU accelerated CLOUDSC between single precision and double precision for the grid column of

160,000 in the right of Figure 5 is not as big as that in the left one. Since NVIDIA K80 GPU in singe

precision can fit at most 160,000 of NPROMA-block once, computation for the 160,000 grid column

with more than one GPU cannot be fully exploited the power of GPUs.

 Adaptation of CLOUDSC to GPU platform with OpenACC

14 Technical Memorandum No.805

6 Conclusions

The key conclusions of this study are:

(1) Computational performance for CLOUDSC on both CPU and GPU platforms scales well with the

number of CPU cores and GPU devices respectively.

(2) The performance is sensitive to the size of NPROMA-block. The CPU version favours a relative

small size of NPROMA-block between 12 and 128 while the GPU version favours a large size of

NPROMA-block over 10,000.

(3) Interchanging the loops with the largest number of iterations is the most effective way to improve

computational performance on GPU.

(4) Optimizations such as hoisting local arrays and calling batched CUBLAS library to perform a large

number of small matrix operations did not show any benefit in the context of a stand-alone code where

the cloud scheme is called only once. However, such optimizations may be beneficial in a realistic

simulation where multiple time steps are performed. In this case data arrays would been placed into

Fortran modules and there is only one allocation to be done for the entire run. This would remove a big

fraction of the overhead.

(5) Increasing the workload given to a GPU improves performance.

(6) As a comparison, for CLOUDSC, the total run time spent on a single GPU is usually more than the

time spent on a CPU with 12 cores. However, if the total run time is separated into GPU calculation

time and overhead time the GPU calculation time is about half of the CPU total run time. This means

that in the adapted CLOUDSC most of the time is spent on the data movement between CPU and GPU.

(7) Compared with double precision, the single precision reduced the total run time by approximately

40% if the work load was saturated.

A question that arises from the above analysis is how big a GPU cluster running CLOUDSC should be

to deliver an operational forecast within an hour as normally required by ECMWF operations. The

cloud scheme consumes approximately over 7% of the total time of an operational forecast in the current

CRAY XC40 supercomputer, hence, the total time spent on this routine should be approximately 250s.

In Tco1279 horizontal resolution there are 2 × ∑ (4 × 𝑛 + 16)
(1279+1)
𝑛=1 =6599680 grid columns and the

model performs 1920 time steps so which gives the rate of 130 ms per step on CLOUDSC. If a system

such as LXG was to be used at peak performance, saturating each GPU’s work load, then the NPROMA

size and the number of grid columns assigned on each GPU should be equal to 80,000. The estimated

number of GPUs to perform the computation would be about ⌈6599680/80000⌉=83 which corresponds

to ⌈83/4⌉=21 GPU nodes (an estimate for higher resolutions is given in Table 10). In this case the

calculation time for a CLOUDSC call would be approximately 500 ms but the total time is much higher

given that includes overheads. Unfortunately, this setup would be too slow to deliver the forecast in the

required 1 hour time. When the number of columns is reduced to 10,000 then the desired rate of 130

ms per step can be achieved for the calculation time (without including overheads). If the Meteo Swiss

approach was followed, in which the entire model was adapted on GPUs, the overhead costs would be

very small as data transfer would be required only during an I/O step. With 0 overhead, it would have

been possible to complete the forecast within 1 hour with approximately 165 GPU nodes which is lower

than the number of CPUs used operationally (360). But if GPUs are only used as an accelerator for

CLOUDSC then, because of large data transfer overhead costs, the number of GPU nodes needed for a

timely delivery of a forecast would likely exceed the number of CPU nodes currently used.

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 15

Table 10. Estimated minimum number of GPUs required to run GPU CLOUDSC at peak performance at

different resolutions based on LXG cluster.

Resolution

of IFS

Grid

columns

Estimated

number of

GPUs

Estimated number

of LXG computing

nodes

TCO1279 6599680 83 21

TCO1999 16072000 201 51

TCO3999 64144000 802 201

Acknowledgements

This work is supported by the bilateral cooperation agreement between ECMWF and the China

Meteorological Administration (CMA) and the decision support project of responding to climate change.

We would also like to thank Valentin Clément from ETH Zurich for his help and guidance in using the

CLAW package.

References
Saarinen S., D. Salmond, R. Forbes (2014): Preparation of IFS physics for future architectures. The

16th ECMWF Workshop on High Performance Computing in Meteorology, Reading. UK, October 2014.

Saarinen S. (2015): Using OpenACC in IFS Physics’ Cloud Scheme (CLOUDSC).

Forbes R., A. M. Tompkins, A. Untch (2011): A new prognostic bulk microphysics scheme for the IFS.

ECMWF Tech. Memo. No. 649.

Forbes R., M. Ahlgrimm (2012): Representing cloud and precipitation in the ECMWF global model.

ECMWF Workshop on Parametrization of Clouds and Precipitation. Reading, UK. November 2012.

ECMWF, R-D. (2017): IFS Documentation. Cy43r1 Operational implementation PART IV: Physical

processes.

https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf.

Norman M., J. Larkin, A. Vose, K. Evans. (2015): A case study of CUDA Fortran and OpenACC for an

atmospheric climate kernel. Journal of Computational Science. 9, 1-6.

Clement V. (2017): CLAW Fortran Compiler Documentation. https://github.com/C2SM-RCM/claw-

compiler.

Williams S., A. Waterman, D. Patterson. (2009): Roofline: an insightful visual performance model for

multicore architectures. Communications of the ACM, Vol.52 DOI: 10.1145/1498765.1498785.

https://www.ecmwf.int/search/elibrary?authors=R.%20Forbes
https://www.ecmwf.int/search/elibrary?authors=M.%20Ahlgrimm

 Adaptation of CLOUDSC to GPU platform with OpenACC

16 Technical Memorandum No.805

Appendix A: Performance sensitivity with respect to NPROMA size.

The following results are obtained from CLOUDSC computation with double precision.

1) CPU

Memory binding is used to make sure that one CPU core corresponds to one OpenMP thread. In brief,

the total time and sustained performance obtained only from all the physical cores with different number

of NPROMA-blocks used are shown in table 11.

Table 11. Total time, Gflops/s of original CLOUDSC computation on an LXG cluster node

OpenMP

threads

NPROMA Time(ms)

12/24

Gflops/s

12/24

12/24 2 4857/3383 4.11/5.90

4 3337/1978 5.98/10.10

8 2450/1447 8.15/13.82

10 2414/1351 8.28/14.78

12 2242/1286 8.91/15.53

16 2228/1321 8.96/15.11

24 2288/1371 8.78/14.57

32 2147/1358 9.30/14.72

48 2106/1433 9.48/13.94

64 2228/1379 8.97/14.48

100 2157/1553 9.26/12.85

128 2184/1508 9.16/13.26

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 17

Figure 7. Time and sustained performance of CLOUDSC computation for 160,000 grid column on 12

and 24 OpenMP threads with different number of NPROMA

2) GPU

The mode that one OpenMP thread controls the computation of one GPU is used. Time and sustained

performance with variable number of GPUs and NPROMA-blocks are shown in Figure 8 and Table 12.

Figure 8. Time and sustained performance of GPU accelerated CLOUDSC computation for 160,000 grid

column on a GPU node with different number of GPUs and NPROMA-blocks

 Adaptation of CLOUDSC to GPU platform with OpenACC

18 Technical Memorandum No.805

Table 12. Time and Gflops/s of the GPU accelerated CLOUDSC computation with different GPU

number, OpenMP threads, NPROMA size settings.

GPUs OpenMP

threads

NPROMA Time(ms) Gflops/s

Calculation Overhead Total

1 1 100 69271 3710 72982 0.27

1000 7878 2381 10261 1.95

10000 1454 2530 3986 5.01

20000 1218 2566 3785 5.28

40000 1123 2525 3650 5.47

80000 1037 2507 3545 5.63

2 2 100 35017 1936 36940 0.54

1000 4098 1296 5392 3.70

10000 760 1473 2231 8.95

20000 640 1514 2153 9.27

40000 589 1514 2100 9.51

80000 555 1529 2086 9.57

4 4 100 17754 1010 18754 1.06

1000 2273 700 2963 6.74

10000 536 817 1352 14.77

20000 432 822 1254 15.92

40000 376 799 1174 17.00

GPU Performance relative with the number of OpenMP threads

Time-sharing GPU across multiple OpenMP threads is used to enable concurrently executed kernels

through OpenMP. For GPU computation of CLOUDSC on NVIDIA K80 GPU, the product of the

number of threads and NPROMA-blocks must not be greater than the maximum NPROMA of 80000

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 19

for each logical GPU due to the limit of GPU memory. The time and sustained performance are shown

in Table 13.

Table 13. Time, Gflops/s of GPU accelerated CLOUDSC computation with an optimum combination of

settings of variable GPUs, OpenMP threads, and NPROMA

GPUs OpenMP

threads

NPROMA Time(ms) Gflops/s

Calculation Overhead Total

1 1 80000 1037 2507 3545 5.63

2 40000 1631 2092 3485 5.73

4 20000 1805 1981 3535 5.65

8 10000 2676 1589 3674 5.43

2 2 80000 555 1529 2086 9.57

4 40000 955 1242 2104 9.49

8 20000 995 1354 2182 9.15

16 10000 1470 1368 2420 8.25

4 4 40000 376 799 1174 17.00

8 20000 615 869 1314 15.30

16 10000 903 903 1519 13.14

Sometimes the total time in GPU accelerated CLOUDSC may be reduced a little by GPU time-sharing.

In most cases time-sharing could reduce the overhead time, but increase the actual GPU calculation time.

If taking into account the total time, time-sharing GPU seems to make little difference with that not

using the time-sharing method.

Appendix B: CLAW Compiler.

CLAW is a high level source to source compiler based on OMNI compiler (Clement, 2017). CLAW

uses its own Fortran directive language for adapting weather and climate models to different computer

architectures. For example, it automatically re-organizes a scientific code performing loop extraction

and fusion, loop re-ordering, loop hoisting and generating appropriate OpenACC or OpenMP directives.

Due to its continuous development and improvement it is becoming an effective tool to maintain a

unified source code for different computer architecture such as multicore, many-core, and GPU platform.

In order to illustrate the functions of CLAW a code segment from CLOUDSC is taken as an example,

the original and transformed code are in Listing 2 and Listing 3 respectively, which includes directives

 Adaptation of CLOUDSC to GPU platform with OpenACC

20 Technical Memorandum No.805

of OpenACC directives, loop-hoist, loop-interchange, and reshape. By executing the command “clawfc

–o scratch_trans.f90 scratch.f90 –d=openacc –t=gpu”, the code generated after transformation is

shown in Listing 3.

!$claw ACC KERNELS

!$claw acc loop

!$claw loop hoist(k) interchange reshape(ZLFINALSUM(0))

DO JM=1,NCLV

 IF (.NOT.LLFALL(JM).AND.IPHASE(JM)>0) THEN

!$claw acc loop

 DO JL=KIDIA,KFDIA

 ZLFINAL=MAX(0.0_JPRB,ZLCUST(JL,JM)-ZDQS(JL)) !lim to zero

 ! no supersaturation allowed incloud ---V

 ZEVAP=MIN((ZLCUST(JL,JM)-ZLFINAL),ZEVAPLIMMIX(JL))

! ZEVAP=0.0_JPRB

ZLFINAL=ZLCUST(JL,JM)-ZEVAP

 ZLFINALSUM(JL)=ZLFINALSUM(JL)+ZLFINAL ! sum

 ZSOLQA(JL,JM,JM) = ZSOLQA(JL,JM,JM)+ZLCUST(JL,JM) ! whole sum

 ZSOLQA(JL,NCLDQV,JM) = ZSOLQA(JL,NCLDQV,JM)+ZEVAP

 ZSOLQA(JL,JM,NCLDQV) = ZSOLQA(JL,JM,NCLDQV)-ZEVAP

 ! Store cloud liquid diagnostic if required

 IF (LLCLDBUDL.AND.JM == NCLDQL) ZBUDL(JL,4)=ZLCUST(JL,JM)*ZQTMST

 IF (LLCLDBUDI.AND.JM == NCLDQI) ZBUDI(JL,4)=ZLCUST(JL,JM)*ZQTMST

 IF (LLCLDBUDL.AND.JM == NCLDQL) ZBUDL(JL,5)=-ZEVAP*ZQTMST

 IF (LLCLDBUDI.AND.JM == NCLDQI) ZBUDI(JL,5)=-ZEVAP*ZQTMST

 ENDDO

 ENDIF

ENDDO

!$claw ACC END KERNELS

Listing 2. Original codes with CLAW directives (scratch.f90)

!$ACC KERNELS

!$acc loop

DO JL=KIDIA,KFDIA

 ZLFINALSUM = 0.0_JPRB

!$acc loop

 DO JM=1,NCLV

 IF (.NOT.LLFALL(JM).AND.IPHASE(JM)>0) THEN

 ZLFINAL=MAX(0.0_JPRB,ZLCUST(JL,JM)-ZDQS(JL)) !lim to zero

 ! no supersaturation allowed incloud ---V

 ZEVAP=MIN((ZLCUST(JL,JM)-ZLFINAL),ZEVAPLIMMIX(JL))

! ZEVAP=0.0_JPRB

 ZLFINAL=ZLCUST(JL,JM)-ZEVAP

 ZLFINALSUM = ZLFINALSUM + ZLFINAL ! sum

 ZSOLQA(JL,JM,JM) = ZSOLQA(JL,JM,JM)+ZLCUST(JL,JM) ! whole sum

Adaptation of CLOUDSC to GPU platform with OpenACC

Technical Memorandum No.805 21

 ZSOLQA(JL,NCLDQV,JM) = ZSOLQA(JL,NCLDQV,JM)+ZEVAP

 ZSOLQA(JL,JM,NCLDQV) = ZSOLQA(JL,JM,NCLDQV)-ZEVAP

 ! Store cloud liquid diagnostic if required

 IF (LLCLDBUDL.AND.JM == NCLDQL) ZBUDL(JL,4)=ZLCUST(JL,JM)*ZQTMST

 IF (LLCLDBUDI.AND.JM == NCLDQI) ZBUDI(JL,4)=ZLCUST(JL,JM)*ZQTMST

 IF (LLCLDBUDL.AND.JM == NCLDQL) ZBUDL(JL,5)=-ZEVAP*ZQTMST

 IF (LLCLDBUDI.AND.JM == NCLDQI) ZBUDI(JL,5)=-ZEVAP*ZQTMST

 ENDIF

 ENDDO

ENDDO

!$ACC END KERNELS

Listing 3. The transformed codes (scratch_trans.f90)

Appendix C: Roofline Model.

The roofline model is a useful approach for finding out how close the program is compared to sustainable

peak performance on a particular GPU (Williams, 2009). The roofline model defines the peak

performance of an architecture by looking at the memory bandwidth (for memory-bound kernels) and

on the theoretical peak Glops/s (for compute-bound kernels). The operational intensity [Flops/Byte] is

given by the algorithm and thereby defines the performance limit.

Figure 8. Performance roofline for a half NVIDIA K80 (GK210) node for Gaussian elimination.

The performance roofline for a half NVIDIA K80 (GK210) is shown in Figure 8. The kernel’s

operational intensity here is determined by approximating the corresponding values by using the

NVIDIA Profiler. The kernel of Gaussian elimination, the most time-consuming port of CLOUDSC, is

taken as an example.

 Adaptation of CLOUDSC to GPU platform with OpenACC

22 Technical Memorandum No.805

Table 14. Measurement of Gaussian elimination kernel through NVDIA Profiler (Execution of

CLOUDSC is based on grid columns of 160,000, NPROMA of 80,000 with 1 GPU and 1 OpenMP thread)

Kernel FLOPS of

double precision

DRAM read

transactions

DRAM write

transactions

Duration (ms)

Gaussian Elimination 31600000 2205001 2692383 1.314

The number of bytes in the formula of operational intensity should multiply the number of transaction

to/from the device memory by 32 since each transaction takes place in 32 Byte chunks.

OI = FLOP/Byte = 31600000 FLOPs / ((2205001 + 2692383)  32Byte) = 0.2016 FLOPs/Byte

where, OI is the operational intensity.

The above value for OI implies that Gaussian elimination kernel is memory bound. The maximum

theoretical performance Perfm is defined by the following formula and computed:

Perfm = min (OI  PSMB, PDPFPP) = min(0.2016 [FLOPs/Byte]  151.3 [GB/s], 1200.4 [GFLOPs/s])

 = 30.5021 GFLOPs/s

where, PSMB is the “peak sustained memory bandwidth”, PDPFPP is the “peak double precision

floating point performance”,

The reached performance for Gaussian elimination kernel (Perfr) is computed as follows:

Perfr=FLOP/time= 31600000 FLOPs/1.314 ms=24.0487 GFLOPs/s

The efficiency (E) is the ratio of reached performance over maximum performance which is a metric of

the utilization of the resources.

E=Perfr/Perfm=24.0487/30.5021=78.8%

