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Abstract 

The ECMWF Integrated Forecast System (IFS) cloud microphysics scheme has been adapted for a 

GPU architecture. Hybrid OpenMP and OpenACC within a single node, hybrid MPI and OpenACC 

over multiple nodes as well as different algorithmic and code optimization methods were employed 

to study the performance impact. The roofline model was used to conduct a performance analysis 

and the CLAW compiler has been explored as a tool for automatic code adaptation.  For a very large 

number of grid columns, the double precision performance of the 4 GK210 GPUs of a single node 

was slightly better than the performance of two 12-core CPUs (contained in the node) in terms of 

the total run rime. However, without taking into account the GPU data transfer and other overheads, 

the actual calculation time for the same large size problem was reduced to approximately one quarter 

of the CPU time giving a speed up factor of 4.  Comparing the performance of a single GPU with a 

single CPU, the obtained speed up factor is approximately 2. A further 40% gain can be achieved 

with single precision. The obtained GPU speed up factor depends a lot on the workload given to a 

GPU; for small or moderate size problems (number of grid columns) the above mentioned speed up 

factors cannot be achieved. 

1 Introduction 

The cloud microphysics scheme is one of the most computationally expensive parts in the IFS model 

(Saarinen, 2014, 2015). Computation of the cloud scheme (CLOUDSC) is dependent only in the vertical 

direction (column mode). When a high resolution model runs on a parallel supercomputer a very large 

number of grid point columns, allocated in groups of separate MPI tasks, can be processed 

simultaneously. GPUs can be used in order to accelerate further this calculation. GPUs are attractive 

due to their low energy to performance ratio being one of the most energy efficient architectures as 

indicated by “The Green 500” supercomputer list: https://www.top500.org/green500/. The question is 

if this can be exploited in a time-critical application such as the global weather prediction system of 

ECMWF. 

The CLOUDSC routine was ported and tested on the LXG GPU test cluster of ECMWF which runs on 

SUSE Linux Enterprise Server 11 SP4 and consists of 34 nodes. Each compute node of this cluster 

contains two Intel Xeon E5-2690v3 (Haswell) CPU sockets with 12 cores per socket and 2 NVIDIA 

K80 cards with 2 GK210 GPUs per card. The configuration of each compute node is shown in Table 1. 

The compiler and its flags used were given in Table 2. 

Different GPU adaptation approaches have been tried for CLOUDSC. A combination of OpenMP with 

OpenACC programming was first tested followed by a hybrid MPI and OpenACC programming 

approach. At the same time, different optimization methods were employed to improve computing 

performance, for example: 

1. Hoisting local arrays with global ones. 

2. Algorithm adjustment to utilize batched CUBLAS library. 

3. Changes of water species sorting method. 

4. Other GPU-related tuning methods such as loop interchange.  

5. Single precision computation. 
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Table 1. Configuration of a node in LXG cluster 

Type Sockets 

(SM) 

Cores/CPU Cache(MB) 

Mem(GB) 

Processor type 

CPU(Haswell) 2 12 30 

128 

Intel Xeon E5-2690 v3 @ 

2.60GHz AVX2 (Haswell) 

GPU(2K80) (26) 4992 SP 

1664 DP 

3.0 

24 

Tesla K80 3.7 @ 823 MHz 

(Mem 2505MHz) CUDA 8.0 

 

Table 2. Compiler and its flags used in the experiment 

Node Type Compiler Compiler flags used 

Dell CPU PGI 16.7 -O3 -fast -Minfo -mp=bind,allcores,numa -Ktrap=fp -

Mbyteswapio -Kieee -Mdaz  -Mfprelaxed 

 GPU PGI 16.7 -O3 –fast -acc -Minfo -ta=nvidia:7.5,kepler -tp=haswell 

-Mvect=simd:256 -mp=bind, -mp=bind,allcores,numa -

Mbyteswapio -Ktrap=fp -Kieee -Mdaz 

 

In section 2, we give a brief introduction to IFS cloud scheme. In section 3, we summarize performance 

results of CLOUDSC for CPUs compared with GPUs. In section 4 the OpenACC parallelization method 

is described. In section 5 detailed results and comparisons are given and in section 6 we report our 

conclusions. Three appendices are included in the report showing: (i) detailed results with respect to the 

sensitivity with blocking size NPROMA (ii) summarising preliminary experience with the code 

adaptation tool CLAW and (iii) finally performance analysis of a roofline model. 

 

2 The IFS cloud scheme 

The IFS cloud scheme is a parametrization of cloud processes for prognostic cloud. It is a multi-species 

prognostic microphysics scheme, with 5 prognostic equations for water vapour, cloud liquid water, rain, 

cloud ice and snow. The equation governing each prognostic cloud variable within the cloud scheme is  

𝜕𝑞𝑥

𝜕𝑡
= 𝐴𝑥 +

1

𝜌

𝜕

𝜕𝑧
(𝜌𝑉𝑥𝑞𝑥)                                                                (1) 

where, 𝑞𝑥 is the specific water content for category x (so x = 1 represents cloud liquid, x = 2 for rain, 

and so on), 𝐴𝑥  is the net source or sink of 𝑞𝑥  through microphysical processes, and the last term 
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represents the sedimentation of 𝑞𝑥 with fall speed 𝑉𝑥 (for details see Forbes et al., 2011; Forbes and 

Ahlgrimm, 2012).  A schematic of the IFS cloud scheme is given Figure 1. 

 

Figure 1. Schematic of the IFS cloud scheme (from Forbes et al, 2011). 

The five prognostic equations for the individual species are solved using a simple forward-in-time, 

implicit solver approach. The solution to this set of equations uses the upstream approach, which utilizes 

the forward difference quotient in time and the backward difference quotient in space (ECMWF, 2017). 

In the scheme, after calculating initial input profiles and initial setup, the sources and sinks variables are 

calculated, followed by the precipitation processes and numerical solvers, then tendencies of all the 

thermodynamic quantities updated, and finally the calculated flux for diagnostics and budget terms.  

 

3 Performance comparison: CPU versus GPU 

Testing showed that the total run time of a compute node with 4 GPUs is 11% less than the total run 

time of a compute node with 2 CPUs (with 24 cores each) for a large size problem in double precision. 

Furthermore, without taking into account the GPU data transfer and other overheads, the actual 

calculation time, for the same large size problem, is reduced to approximately a quarter of the CPU time 

i.e. a speed up factor of 4.  Comparing the performance of a single GPU with a single CPU, the obtained 

speed up factor is approximately 2.  The detailed results of computation with double precision for 

160,000 and 320,000 grid columns using OpenMP and OpenACC directives are given in Table 3. The 

chosen NPROMA corresponds to the optimal setting for the given number of threads and GPUs. 

Assigning 320,000 grid columns per GPU node gives a performance near the peak. The highest number 

of grid columns that can be used in a single LXG node is 1,280,000 – our tests indicated that performance 

peaked at this number of columns (not shown here). Although this performance may be optimal for a 

GPU, using such a large number of columns is unrealistic for a NWP forecast which should be completed 

in a relatively short time of the order of 1 hour. Therefore, we will not expand further on these results 

and we will use the more modest but rather large set up of 160,000 grid columns. 

https://www.ecmwf.int/search/elibrary?authors=M.%20Ahlgrimm
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Table 3. Time and Gflops/s on CPU and GPU platform for different number of OpenMP threads, GPUs,  

NPROMA and grid columns with double precision (here speedup is defined as the ratio of the CPU total 

run time of a single CPU with 12 cores to that of two CPUs with 24 cores or the GPU actual calculation 

time). 

Grid 

columns 

OpenMP 

Threads 

GPUs NPROMA Time(ms) Gflops/s Speedup 

Calculation Overhead Total 

160000 12 - 48   2105 9.48 1 

24 - 12   1286 15.53 1.63 

1 1 80000 1037 2507 3545 5.63 2.02 

2 2 80000 555 1529 2086 9.57 3.79 

4 4 40000 376 799 1174 17.00 5.59 

320000 12 - 48   4127 9.68 1 

24 - 12   2470 16.17 1.67 

1 1 80000 2056 4999 7057 5.66 2.00 

2 2 80000 1064 3126 4192 9.54 3.87 

4 4 80000 641 1560 2193 18.20 6.43 

 

It is worth mentioning that when the number of NPROMA-block was increased, the GPU calculation 

time reduced remarkably. Generally, the GPU calculation time is the shortest when NPROMA-block is 

set up to 80,000 which is the number giving the best fitting in GPU’s memory for NVIDIA K80 GPU. 

The computational performance of CLOUDSC is also sensitive to the number of NPROMA-blocks. In 

most cases, the computational performance of CLOUDSC on CPUs with 12 or 24 OpenMP threads is 

optimum when NPROMA is between 12 and 128 (see Appendix A). 
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Figure 2. Comparison of CPU total run time, GPU calculation time, and GPU overhead time for grid columns 

of 160000(left) and 320000(right) 

 

 

Figure 3. Comparison of performance and total run time on CPUs and GPUs for grid columns of 

160000(left) and 320000(right) 

4 Parallelization with OpenACC directives 

4.1 Implementation 

A simple shell script was written to insert OpenACC directives like ACC KERNELS or ACC 

PARALLEL in the front of code loops (see Listing 1). Furthermore, ACC COPY or ACC PRESENT 

clauses have been manually added in the beginning of real computation. Through these two steps an 

initial GPU based accelerated version can be obtained. Furthermore, setting a bigger NPROMA size and 

runtime environment variables like buffer-size, using memory binding, and other methods like 

asynchronous computing and data movement have been attempted to attain an optimized performance. 

Because the current version of PGI Accelerator Compiler does not support derived type of allocated 

array and pointer association operation efficiently (Norman et al., 2015), the codes using derived type 

and pointer operations should be rewritten first. Following that, 38 input arrays were requested to be 

copied from CPU memory to GPU memory using ACC DATA COPYIN clause, and 22 output arrays 

were requested to be copied from GPU memory to CPU memory through using ACC DATA COPYOUT 

clause. The array variables could be obtained through the “intent” attribute from array definition in the 
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subroutine of “cloudsc”. The automatic arrays in the subroutine of “cloudsc” were assigned to GPUs 

and released after the “cloudsc” call via additional ACC DATA CREATE layer.  

#!/bin/bash 

file=$1 

sed -e 's/SUBROUTINE CLOUDSC/SUBROUTINE CLOUDSC_ACC/g' \ 

    -e 's/tendency_\([a-zA-Z]\+\)%\([a-zA-Z]\+\)/pstate_\2_\1/g' \ 

    -e '1,/START OF VERTICAL LOOP/ { 

        s/^DO /\n!$ACC KERNELS\n!$acc loop\n&/g  

        s/^[ \t]\+DO /\n!$acc loop\n&/g  

        s/^ENDDO/&\n!$ACC END KERNELS\n/g 

        }' \ 

    -e '/END OF VERTICAL LOOP/,$ { 

        s/^DO /\n!$ACC KERNELS\n!$acc loop\n&/g  

        s/^[ \t]\+DO /\n!$acc loop\n&/g  

        s/^ENDDO/&\n!$ACC END KERNELS\n/g 

        }' \ 

    -e '/START OF VERTICAL LOOP/,/END OF VERTICAL LOOP/ { 

        s/^  DO /\n!$ACC KERNELS\n!$acc loop\n&/g  

        s/^  [ \t]\+DO /\n!$acc loop\n#endif\n&/g  

        s/^  ENDDO/&\n!$ACC END KERNELS\n/g 

        }' \ 

$file 

Listing 1. Scripts to insert OpenACC directives 

One of the most computationally expensive subroutines in the IFS model is “cuadjq” also called by the 

subroutine of “cloudsc”. Fortunately just few lines of code were used and these were inlined to “cloudsc” 

in order to obtain better performance. 

Regarding the accuracy of results, the relative error was in the range of tolerance of machine precision 

(double precision). 

4.2 Optimization 

In order to analyse and improve performance, the NVIDIA profiler tool of “nvprof” was used for hotspot 

and bottle-neck analysis of the routine. Interchanging the JL-outer loop with the inner JM-loop index 

(see Listing 2, 3 of Appendix B) reduced calculation time. In most cases, performance could be further 

improved by increasing the compiler’s default vector size to improve GPU occupancy. Replacing 

temporary arrays by scalar, especially 3D arrays, was also an effective way to boost performance both 

in terms of calculation time and overhead. Other methods such as loop fusion to reduce computation 

kernels contribute to further improvement of performance. More specifically, based on the original 

implementation for implicit solver, by only changing the vector size from default 128 to 512 could 

reduce by 10% the calculation time for the Gaussian elimination. Furthermore replacing a 3D array with 

a scalar (see Listing 2), an additional 5% gain can be achieved. 
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  ! Non pivoting recursive factorization  

  DO JN = 1, NCLV-1  ! number of steps 

     DO JM = JN+1,NCLV ! row index 

 ZQLHS(KIDIA:KFDIA,JM,JN)=ZQLHS(KIDIA:KFDIA,JM,JN) 

       &                 / ZQLHS(KIDIA:KFDIA,JN,JN) 

      DO IK=JN+1,NCLV ! column index 

        DO JL=KIDIA,KFDIA 

          ZQLHS(JL,JM,IK)=ZQLHS(JL,JM,IK) -                               

&                  ZQLHS(JL,JM,JN)*ZQLHS(JL,JN,IK) 

        ENDDO 

      ENDDO 

    ENDDO 

  ENDDO         

  ! Backsubstitution step 1  

  DO JN=2,NCLV 

    DO JM = 1,JN-1 

      ZQXN(KIDIA:KFDIA,JN)=ZQXN(KIDIA:KFDIA,JN)  -     

&     ZQLHS(KIDIA:KFDIA,JN,JM)*ZQXN(KIDIA:KFDIA,JM) 

    ENDDO 

  ENDDO 

  ! Non pivoting recursive factorization  

  DO JN = 1, NCLV-1  ! number of steps 

    DO JM = JN+1,NCLV ! row index 

      xmult =ZQLHS(JL,JM,JN)  

&     / ZQLHS(KIDIA:KFDIA,JN,JN) 

      DO IK=JN+1,NCLV ! column index 

        ZQLHS(JL,JM,IK)=ZQLHS(JL,JM,IK) -            

&            xmult *ZQLHS(JL,JN,IK) 

      ENDDO 

      ! Backsubstitution  

ZQXN(JL,JN)=ZQXN(JL,JN)- xmult * ZQXN(JL,JM) 

    ENDDO 

  ENDDO  

 

 

 

Listing 2. Code segment for replacing a 3D array with a scalar (left: original, right: modified) 

The solver for the microphysics consumes most of the time of the GPU CLOUDSC except for the 

overhead part which includes the data movement between host and device (see Figure 4). Data 

movement is the biggest contributor in the overhead. An implicit solver for many small linear systems 

with Gaussian elimination method is used in the original implementation. For a matrix, LU (Lower and 

Upper triangular Matrix) factorization is first done, followed by back substitution, then the final result 

is obtained. 

 

Figure 4. The computational cost distribution of GPU accelerated CLOUDSC on a single GPU with 

80,000 of NPROMA-block for 160,000 grid columns.  

There are a large number of small linear equation systems (5×5) that need to be solved in CLOUDSC. 

Calling a batched Gaussian elimination routine from CUBLAS library was attempted to find if any 

performance increase could be gained. Currently, some CUDA Fortran features (like type definition 

attribute with “device” and “c_devptr”, and function of “c_devloc”) need to be used to call batched 
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CUBLAS routine successfully. But the performance result is much worse than without calling CUBLAS 

routine. 

5 Detailed performance results and comparisons 

In this section we expand the results presented in section 3, and we provide detailed comparisons for 

each attempted optimization. 

The results were obtained by averaging 5 separate runs using 160,000 grid columns (NGPTOT). For the 

double precision version of the program, a complete list of experiments were performed, while for the 

single precision version of program, two selected experiments were performed as a simple comparison 

to indicate the impact. In general, the conclusion derived from computations with various grid columns 

holds independently of the number of grid columns. 

5.1 Results of the original CLOUDSC on CPU host 

The CPU version of CLOUDSC, has been tested using different number of OpenMP threads and 

NPROMA-blocks. The total run time and sustained performance (Gflops/s) for different number of CPU 

threads and an optimum NPROMA-block for the number of threads are shown in table 4. 

Table 4. Total run time, Gflops/s of the original CLOUDSC computation on an LXG cluster node for 

different number of OpenMP threads and 160,000 grid columns. For each number of OpenMP threads 

listed, the corresponding NPROMA is the one that gives the best performance. 

OpenMP 

threads 

NPROMA Total 

time(ms) 

Gflops/s 

1 128 19869 1.00 

4 64 5305 3.76 

8 64 2954 6.76 

16 48 1711 11.67 

24 12 1285 15.53 

 

Irrespective to the change of number of NPROMA-blocks, the total run time was decreased when the 

number of OpenMP threads was increased. Good parallel scaling efficiency is achieved which decreases 

gradually as the number of threads increases.  

5.2 Results of accelerated CLOUDSC on GPU 

5.2.1 Hybrid OpenMP and OpenACC directives 

In this section results from the version of accelerated CLOUDSC on GPU using hybrid OpenMP and 

OpenACC directives are first shown, followed by another version where the original Gaussian 

elimination method is replaced by calling CUBLAS library. The implementation using hybrid OpenMP 

and OpenACC directives with calling CUBLAS library depends on CUDA Fortran features of device 
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type definition attribute of “device”, “c_devptr”, and functions of “c_devloc”, 

“cudaDeviceSynchronize”, “cublasDgetrfBatched”, “cublasDgetrsBatched”.  

Table 5. Time and Gflops/s of the GPU accelerated CLOUDSC computation for different number of 

OpenMP threads, GPUs, NPROMA and 160,000 grid columns. The listed NPROMA is the one that gives 

the shortest calculation time and biggest number of Gflops/s. Results repeated using CUBLAS library. 

GPUs OpenMP 

threads 

NPROMA Time(ms) Gflops/s 

Calculation Overhead Total 

1 1 80000 1037 2507 3545 5.63 

2 40000 1631 2092 3485 5.73 

4 20000 1805 1981 3535 5.65 

2 2 80000 555 1529 2086 9.57 

4 40000 955 1242 2104 9.49 

8 20000 995 1354 2182 9.15 

4 4 40000 376 799 1174 17.00 

4 20000 432 822 1254 15.92 

CUBLAS LIBRARY RESULTS 

1 1 80000 1976 2509 4486 4.45 

2 40000 2535 2091 4347 4.59 

4 20000 3487 1479 4577 4.36 

2 2 80000 1120 1528 2648 7.54 

4 40000 1522 1308 2647 7.54 

8 20000 1883 1124 2821 7.08 

4 4 40000 949 794 1738 11.49 

4 20000 1060 810 1864 10.71 

For both implementations, different number of GPUs, number of OpenMP threads and NPROMA-

blocks were chosen. Computation on each GPU is driven by one or more OpenMP threads. The GPU 

calculation time, overhead time, total run time and sustained performance (Gflops/s) for different 

combination of settings are shown in Table 5. 
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The shortest GPU calculation time is achieved when one OpenMP thread controls one GPU for the 

optimal setting of 80,000 NPROMA for a specified GPU number. When using time-sharing GPU mode 

(i.e. more than one OpenMP threads drives one GPU), the GPU overhead time including data transfer 

overhead is reduced, but the actual GPU calculation time is increased. And there is little difference in 

the total time between using or not using GPU time-sharing. Only considering the GPU calculation time, 

the performance scales very well with the increasing number of GPU. 

The hybrid OpenMP and OpenACC version with calling CUBLAS library shows an apparent 

degradation of performance especially in terms of GPU calculation time, when compared with the 

equivalent version without CUBLAS (see Table 5). The overhead time is almost the same given that 

codes changes are only applied in the computation of Gaussian elimination method.  

In some of the entries of Table 5, there is a small difference between the total time and the sum of the 

GPU calculation time and the GPU overhead time. This occurs when more than one thread is used to 

control a GPU. The reason is that the reported time is the minimum time for each thread. Each thread 

time is the average of five runs.  

5.2.2 Hybrid MPI and OpenACC directives 

In this section, results from the GPU adaptation with hybrid MPI and OpenACC directives is shown 

first, followed by another version with hoisting of local arrays. Hoisting of local arrays means moving 

the local definition of arrays in a subroutine to another module file including statements of allocatable 

array definitions, allocating memory and deallocating memory. This may improve performance, 

especially when a subroutine with a large number of local arrays is called several times at each execution. 

Computation in each GPU is controlled by an MPI task. The GPU calculation time, time of hoisting 

local arrays, overhead time, total time and sustained performance (Gflops/s) for different combination 

numbers of GPUS, MPI tasks, nodes and NPROMA-blocks are demonstrated in table 6 and table 7, 

respectively. 

Table 6. Time and Gflops/s for the GPU CLOUDSC for 160,000 grid columns with different number of 

MPI tasks, GPUs per node, nodes and an optimum NPROMA for each configuration. 

MPI 

tasks 

GPUs 

per node 

Nodes NPROMA Time(ms) Gflops/s 

Calculation Overhead Total 

1 1 1 80000 1102 2485 3588 5.57 

2 1 2 80000 562 1250 1813 11.02 

2 1 80000 568 1537 2106 9.48 

4 1 4 40000 319 657 977 20.47 

2 2 40000 314 766 1080 18.47 

4 1 40000 342 806 1143 17.49 

As we can see in Tables 6, 7 when multiple MPI tasks are employed on the same node, the overhead 

time is longer than the time when MPI tasks are distributed over different nodes with the same 
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combination of MPI tasks, GPUs and NPROMA. The possible reasons lie in two aspects. One is that 

each MPI task could only use part of the whole node’s memory when several MPI tasks are executed on 

the same node. The other is that the system overhead would be less when fewer MPI tasks per node are 

used. The performance of hybrid MPI and OpenACC version of CLOUDSC also scales very well, much 

like that of hybrid OpenMP and OpenACC version. 

The impact of hoisting local arrays is small (see Table 6). With the available hardware and PGI compiler 

environment, hoisting seems not an effectively optimization method for the GPU computation of 

CLOUDSC. 

Table 7. Time and Gflops/s of the GPU accelerated CLOUDSC computation with hoisting local arrays.  

MPI 

tasks 

GPUs 

per node 

Nodes NPROMA Time(ms) Gflops/s 

Calculation Hoisting Overhead Total 

1 1 1 80000 1090 218 2498 3808 5.24 

2 1 2 80000 557 232 1364 2151 9.29 

2 1 80000 556 580 1640 2751 7.27 

4 1 4 40000 338 215 693 1245 16.04 

2 2 40000 338 562 873 1706 11.71 

4 1 40000 348 1305 1042 2651 7.56 

 

5.3 Single precision results 

The output atmospheric parameters in single precision differ from that in double precision. The size of 

the difference for some variables can be up to 1 percent with respect to their magnitude in double 

precision. Larger differences can be noticed between double precision CPU results and single precision 

GPU results. Two are the possible reasons.  The first is that the input data used in single precision are 

transformed directly from the input data provided in double precision that produced rounding off errors. 

The second and perhaps more important reason is that the accelerators available today support most of 

the IEEE floating-point standard but they do not support all the rounding modes and some operations. 

However, the performance results in single precision could be referred.  

5.3.1 Results of the original CLOUDSC on CPU 

The total run time and sustained performance (Gflops/s) for different number of CPU threads and an 

optimum NPROMA-block are shown in Table 8 and can be compared with Table 4. A similar conclusion 

to double precision can be drawn: regardless what the number of NPROMA-blocks was, the total time 

was decreased when the number of OpenMP threads was increased. Furthermore, the calculation time 

was approximately reduced by one third compared with double precision. 
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Table 8. Total run time, Gflops/s of original CLOUDSC computation with the best NPROMA for each 

OpenMP thread setting on an LXG cluster node for 160,000 grid columns. 

OpenMP 

threads 

NPROMA Total 

time(ms) 

Gflops/s 

1 100 13552 1.47 

4 128 3499 5.71 

8 128 1959 10.19 

16 64 1102 18.10 

24 64 864 23.10 

 

 
Figure 5. Comparison of total run time for CLOUDSC computation on a CPU node with single 

precision and double precision for 160000 grid columns. 

5.3.2 Results of GPU accelerated CLOUDSC with hybrid OpenMP and OpenACC 

Computation on each GPU is controlled by one or more OpenMP threads. The GPU calculation time, 

overhead time, total run time and sustained performance (Gflops/s) for different combination number of 

GPUs, OpenMP threads and NPROMA blocks are shown in Table 9.  
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Table 9. Time and Gflops/s of the GPU CLOUDSC with different number of GPUs, OpenMP threads, 

NPROMA and 160,000 grid columns (NPROMA=160,000 is the maximum number can be used in the 

GPU version of CLOUDSC due to the memory limit of NVIDIA K80 card). 

GPUs OpenMP 

threads 

NPROMA Time(ms) Gflops/s 

Calculation Overhead Total 

1 1 160000 618 1255 1875 10.65 

2 80000 962 888 1851 10.79 

2 2 80000 367 772 1138 17.54 

4 4 40000 284 422 701 28.50 

 

 

 

Figure 6. Comparison of time for hybrid OpenMP and OpenACC of CLOUDSC computation on a GPU 

node with single precision and double precision for 160,000 grid columns. 

Compared with the time in double precision, if the work load of GPUs is saturated fully, both the time 

of GPU calculation and overhead in single precision reduced as the number of GPU was increased, and 

the time reduced about 40%. The amplitude of GPU calculation time reduction in the computation of 

GPU accelerated CLOUDSC between single precision and double precision for the grid column of 

160,000 in the right of Figure 5 is not as big as that in the left one. Since NVIDIA K80 GPU in singe 

precision can fit at most 160,000 of NPROMA-block once, computation for the 160,000 grid column 

with more than one GPU cannot be fully exploited the power of GPUs. 
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6 Conclusions 

The key conclusions of this study are:  

(1) Computational performance for CLOUDSC on both CPU and GPU platforms scales well with the 

number of CPU cores and GPU devices respectively.  

(2) The performance is sensitive to the size of NPROMA-block. The CPU version favours a relative 

small size of NPROMA-block between 12 and 128 while the GPU version favours a large size of 

NPROMA-block over 10,000.  

(3) Interchanging the loops with the largest number of iterations is the most effective way to improve 

computational performance on GPU. 

(4) Optimizations such as hoisting local arrays and calling batched CUBLAS library to perform a large 

number of small matrix operations did not show any benefit in the context of a stand-alone code where 

the cloud scheme is called only once. However, such optimizations may be beneficial in a realistic 

simulation where multiple time steps are performed. In this case data arrays would been placed into 

Fortran modules and there is only one allocation to be done for the entire run. This would remove a big 

fraction of the overhead. 

(5) Increasing the workload given to a GPU improves performance. 

(6) As a comparison, for CLOUDSC, the total run time spent on a single GPU is usually more than the 

time spent on a CPU with 12 cores. However, if the total run time is separated into GPU calculation 

time and overhead time the GPU calculation time is about half of the CPU total run time. This means 

that in the adapted CLOUDSC most of the time is spent on the data movement between CPU and GPU.  

(7) Compared with double precision, the single precision reduced the total run time by approximately 

40% if the work load was saturated.   

A question that arises from the above analysis is how big a GPU cluster running CLOUDSC should be 

to deliver an operational forecast within an hour as normally required by ECMWF operations.  The 

cloud scheme consumes approximately over 7% of the total time of an operational forecast in the current 

CRAY XC40 supercomputer, hence, the total time spent on this routine should be approximately 250s.  

In Tco1279 horizontal resolution there are 2 × ∑ (4 × 𝑛 + 16)
(1279+1)
𝑛=1 =6599680 grid columns and the 

model performs 1920 time steps so which gives the rate of 130 ms per step on CLOUDSC. If a system 

such as LXG was to be used at peak performance, saturating each GPU’s work load, then the NPROMA 

size and the number of grid columns assigned on each GPU should be equal to 80,000. The estimated 

number of GPUs to perform the computation would be about ⌈6599680/80000⌉=83 which corresponds 

to ⌈83/4⌉=21 GPU nodes (an estimate for higher resolutions is given in Table 10). In this case the 

calculation time for a CLOUDSC call would be approximately 500 ms but the total time is much higher 

given that includes overheads. Unfortunately, this setup would be too slow to deliver the forecast in the 

required 1 hour time.  When the number of columns is reduced to 10,000 then the desired rate of 130 

ms per step can be achieved for the calculation time (without including overheads). If the Meteo Swiss 

approach was followed, in which the entire model was adapted on GPUs, the overhead costs would be 

very small as data transfer would be required only during an I/O step. With 0 overhead, it would have 

been possible to complete the forecast within 1 hour with approximately 165 GPU nodes which is lower 

than the number of CPUs used operationally (360). But if GPUs are only used as an accelerator for 

CLOUDSC then, because of large data transfer overhead costs, the number of GPU nodes needed for a 

timely delivery of a forecast would likely exceed the number of CPU nodes currently used. 
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Table 10. Estimated minimum number of GPUs required to run GPU CLOUDSC at peak performance at 

different resolutions based on LXG cluster. 

Resolution 

of IFS 

Grid 

columns 

Estimated 

number of 

GPUs  

Estimated number 

of LXG computing 

nodes 

TCO1279 6599680 83 21 

TCO1999 16072000 201 51 

TCO3999 64144000 802 201 
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Appendix A: Performance sensitivity with respect to NPROMA size. 

The following results are obtained from CLOUDSC computation with double precision. 

1) CPU 

Memory binding is used to make sure that one CPU core corresponds to one OpenMP thread. In brief, 

the total time and sustained performance obtained only from all the physical cores with different number 

of NPROMA-blocks used are shown in table 11.  

Table 11. Total time, Gflops/s of original CLOUDSC computation on an LXG cluster node 

OpenMP 

threads 

NPROMA Time(ms) 

12/24 

Gflops/s 

12/24 

12/24 2 4857/3383 4.11/5.90 

4 3337/1978 5.98/10.10 

8 2450/1447 8.15/13.82 

10 2414/1351 8.28/14.78 

12 2242/1286 8.91/15.53 

16 2228/1321 8.96/15.11 

24 2288/1371 8.78/14.57 

32 2147/1358 9.30/14.72 

48 2106/1433 9.48/13.94 

64 2228/1379 8.97/14.48 

100 2157/1553 9.26/12.85 

128 2184/1508 9.16/13.26 
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Figure 7. Time and sustained performance of CLOUDSC computation for 160,000 grid column on 12 

and 24 OpenMP threads with different number of NPROMA 

 

2) GPU 

The mode that one OpenMP thread controls the computation of one GPU is used. Time and sustained 

performance with variable number of GPUs and NPROMA-blocks are shown in Figure 8 and Table 12. 

 

 

 

 

Figure 8. Time and sustained performance of GPU accelerated CLOUDSC computation for 160,000 grid 

column on a GPU node with different number of GPUs and NPROMA-blocks 

 

 

 

 

 

 



 Adaptation of CLOUDSC to GPU platform with OpenACC 

 

 

18 Technical Memorandum No.805 

 

Table 12. Time and Gflops/s of the GPU accelerated CLOUDSC computation with different GPU 

number, OpenMP threads, NPROMA size settings. 

GPUs OpenMP 

threads 

NPROMA Time(ms) Gflops/s 

Calculation Overhead Total 

1 1 100 69271 3710 72982 0.27 

1000 7878 2381 10261 1.95 

10000 1454 2530 3986 5.01 

20000 1218 2566 3785 5.28 

40000 1123 2525 3650 5.47 

80000 1037 2507 3545 5.63 

2 2 100 35017 1936 36940 0.54 

1000 4098 1296 5392 3.70 

10000 760 1473 2231 8.95 

20000 640 1514 2153 9.27 

40000 589 1514 2100 9.51 

80000 555 1529 2086 9.57 

4 4 100 17754 1010 18754 1.06 

1000 2273 700 2963 6.74 

10000 536 817 1352 14.77 

20000 432 822 1254 15.92 

40000 376 799 1174 17.00 

 

 

 

 

GPU Performance relative with the number of OpenMP threads 

Time-sharing GPU across multiple OpenMP threads is used to enable concurrently executed kernels 

through OpenMP. For GPU computation of CLOUDSC on NVIDIA K80 GPU, the product of the 

number of threads and NPROMA-blocks must not be greater than the maximum NPROMA of 80000 



Adaptation of CLOUDSC to GPU platform with OpenACC   

 

  

Technical Memorandum No.805 19 

 

for each logical GPU due to the limit of GPU memory. The time and sustained performance are shown 

in Table 13.  

Table 13. Time, Gflops/s of GPU accelerated CLOUDSC computation with an optimum combination of 

settings of variable GPUs, OpenMP threads, and NPROMA 

GPUs OpenMP 

threads 

NPROMA Time(ms) Gflops/s 

Calculation Overhead Total 

1 1 80000 1037 2507 3545 5.63 

2 40000 1631 2092 3485 5.73 

4 20000 1805 1981 3535 5.65 

8 10000 2676 1589 3674 5.43 

2 2 80000 555 1529 2086 9.57 

4 40000 955 1242 2104 9.49 

8 20000 995 1354 2182 9.15 

16 10000 1470 1368 2420 8.25 

4 4 40000 376 799 1174 17.00 

8 20000 615 869 1314 15.30 

16 10000 903 903 1519 13.14 

Sometimes the total time in GPU accelerated CLOUDSC may be reduced a little by GPU time-sharing. 

In most cases time-sharing could reduce the overhead time, but increase the actual GPU calculation time. 

If taking into account the total time, time-sharing GPU seems to make little difference with that not 

using the time-sharing method.  

 

Appendix B: CLAW Compiler. 

CLAW is a high level source to source compiler based on OMNI compiler (Clement, 2017). CLAW 

uses its own Fortran directive language for adapting weather and climate models to different computer 

architectures. For example, it automatically re-organizes a scientific code performing loop extraction 

and fusion, loop re-ordering, loop hoisting and generating appropriate OpenACC or OpenMP directives. 

Due to its continuous development and improvement it is becoming an effective tool to maintain a 

unified source code for different computer architecture such as multicore, many-core, and GPU platform. 

In order to illustrate the functions of CLAW a code segment from CLOUDSC is taken as an example, 

the original and transformed code are in Listing 2 and Listing 3 respectively, which includes directives 
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of OpenACC directives, loop-hoist, loop-interchange, and reshape. By executing the command  “clawfc 

–o scratch_trans.f90 scratch.f90 –d=openacc –t=gpu”, the code generated after transformation  is 

shown in Listing 3. 

!$claw ACC KERNELS 

!$claw acc loop 

!$claw loop hoist(k) interchange reshape(ZLFINALSUM(0)) 

DO JM=1,NCLV 

  IF (.NOT.LLFALL(JM).AND.IPHASE(JM)>0) THEN  

!$claw acc loop 

    DO JL=KIDIA,KFDIA 

      ZLFINAL=MAX(0.0_JPRB,ZLCUST(JL,JM)-ZDQS(JL)) !lim to zero 

      ! no supersaturation allowed incloud ---V 

      ZEVAP=MIN((ZLCUST(JL,JM)-ZLFINAL),ZEVAPLIMMIX(JL))  

!      ZEVAP=0.0_JPRB 

ZLFINAL=ZLCUST(JL,JM)-ZEVAP  

      ZLFINALSUM(JL)=ZLFINALSUM(JL)+ZLFINAL ! sum  

      ZSOLQA(JL,JM,JM)     = ZSOLQA(JL,JM,JM)+ZLCUST(JL,JM) ! whole sum  

      ZSOLQA(JL,NCLDQV,JM) = ZSOLQA(JL,NCLDQV,JM)+ZEVAP 

      ZSOLQA(JL,JM,NCLDQV) = ZSOLQA(JL,JM,NCLDQV)-ZEVAP 

      ! Store cloud liquid diagnostic if required 

      IF (LLCLDBUDL.AND.JM == NCLDQL) ZBUDL(JL,4)=ZLCUST(JL,JM)*ZQTMST 

      IF (LLCLDBUDI.AND.JM == NCLDQI) ZBUDI(JL,4)=ZLCUST(JL,JM)*ZQTMST 

      IF (LLCLDBUDL.AND.JM == NCLDQL) ZBUDL(JL,5)=-ZEVAP*ZQTMST 

      IF (LLCLDBUDI.AND.JM == NCLDQI) ZBUDI(JL,5)=-ZEVAP*ZQTMST 

    ENDDO 

  ENDIF 

ENDDO 

!$claw ACC END KERNELS 

Listing 2. Original codes with CLAW directives (scratch.f90) 

!$ACC KERNELS 

!$acc loop 

DO JL=KIDIA,KFDIA 

  ZLFINALSUM = 0.0_JPRB 

!$acc loop 

  DO JM=1,NCLV 

    IF (.NOT.LLFALL(JM).AND.IPHASE(JM)>0) THEN  

      ZLFINAL=MAX(0.0_JPRB,ZLCUST(JL,JM)-ZDQS(JL)) !lim to zero 

      ! no supersaturation allowed incloud ---V 

      ZEVAP=MIN((ZLCUST(JL,JM)-ZLFINAL),ZEVAPLIMMIX(JL))  

!      ZEVAP=0.0_JPRB 

      ZLFINAL=ZLCUST(JL,JM)-ZEVAP  

      ZLFINALSUM = ZLFINALSUM + ZLFINAL ! sum 

      ZSOLQA(JL,JM,JM)     = ZSOLQA(JL,JM,JM)+ZLCUST(JL,JM) ! whole sum  
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      ZSOLQA(JL,NCLDQV,JM) = ZSOLQA(JL,NCLDQV,JM)+ZEVAP 

      ZSOLQA(JL,JM,NCLDQV) = ZSOLQA(JL,JM,NCLDQV)-ZEVAP 

      ! Store cloud liquid diagnostic if required 

      IF (LLCLDBUDL.AND.JM == NCLDQL) ZBUDL(JL,4)=ZLCUST(JL,JM)*ZQTMST 

      IF (LLCLDBUDI.AND.JM == NCLDQI) ZBUDI(JL,4)=ZLCUST(JL,JM)*ZQTMST 

      IF (LLCLDBUDL.AND.JM == NCLDQL) ZBUDL(JL,5)=-ZEVAP*ZQTMST 

      IF (LLCLDBUDI.AND.JM == NCLDQI) ZBUDI(JL,5)=-ZEVAP*ZQTMST 

    ENDIF 

  ENDDO 

ENDDO 

!$ACC END KERNELS 

Listing 3. The transformed codes (scratch_trans.f90) 

Appendix C: Roofline Model. 

The roofline model is a useful approach for finding out how close the program is compared to sustainable 

peak performance on a particular GPU (Williams, 2009). The roofline model defines the peak 

performance of an architecture by looking at the memory bandwidth (for memory-bound kernels) and 

on the theoretical peak Glops/s (for compute-bound kernels). The operational intensity [Flops/Byte] is 

given by the algorithm and thereby defines the performance limit. 

 

 

Figure 8. Performance roofline for a half NVIDIA K80 (GK210) node for Gaussian elimination. 

The performance roofline for a half NVIDIA K80 (GK210) is shown in Figure 8. The kernel’s 

operational intensity here is determined by approximating the corresponding values by using the 

NVIDIA Profiler. The kernel of Gaussian elimination, the most time-consuming port of CLOUDSC, is 

taken as an example.  
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Table 14. Measurement of Gaussian elimination kernel through NVDIA Profiler (Execution of 

CLOUDSC is based on grid columns of 160,000, NPROMA of 80,000 with 1 GPU and 1 OpenMP thread) 

Kernel FLOPS of 

double precision 

DRAM read 

transactions 

DRAM write 

transactions 

Duration (ms) 

Gaussian Elimination 31600000 2205001 2692383 1.314 

The number of bytes in the formula of operational intensity should multiply the number of transaction 

to/from the device memory by 32 since each transaction takes place in 32 Byte chunks. 

OI = FLOP/Byte = 31600000 FLOPs / ( ( 2205001 + 2692383 )  32Byte ) = 0.2016 FLOPs/Byte 

where, OI is the operational intensity. 

The above value for OI implies that Gaussian elimination kernel is memory bound. The maximum 

theoretical performance Perfm is defined by the following formula and computed: 

Perfm = min ( OI  PSMB, PDPFPP ) = min( 0.2016 [FLOPs/Byte]  151.3 [GB/s], 1200.4 [GFLOPs/s] ) 

         = 30.5021 GFLOPs/s      

where, PSMB is the “peak sustained memory bandwidth”, PDPFPP is the “peak double precision 

floating point performance”,  

The reached performance for Gaussian elimination kernel (Perfr) is computed as follows:  

Perfr=FLOP/time= 31600000 FLOPs/1.314 ms=24.0487 GFLOPs/s 

The efficiency (E) is the ratio of reached performance over maximum performance which is a metric of 

the utilization of the resources. 

E=Perfr/Perfm=24.0487/30.5021=78.8% 


