

Convective-scale NWP for Singapore

Hans Huang and the weather modelling and prediction section MSS, Singapore

Dale Barker and the SINGV team Met Office, Exeter, UK

ECMWF Symposium on Dynamical Meteorology and NWP

8 June 2017

Tropical weather systems are complex

- Convective rain clouds develop rapidly and have short-life span
- Largely driven by winds, which tend to be weaker and more variable in direction in the tropics
- Difficult to give precise forecasts of onset, location and intensity
- "Off-the-shelf" Numerical Weather Prediction (NWP) models - Low skill in predicting convective-scale systems (rain showers, localised thunderstorms)

SINGV, 500m

07H45M 19 Aug 2016

Rain rate

mm/hr

Anurag Dipankar

WRF, 500m

Singapore Weather: Surface Temperature

Raizan, MSS

• Little variability through year....

Monsoon Seasons in Singapore

Cheong Wee Kiong, MSS

Main weather systems which bring heavy rainfall:

Localized convective thunderstorms

"Sumatra" squalls

Monsoon surges

Average Number of Thunderstorm Days

Average Number of Sumatra squalls 9 making landfall in Singapore 8 7 Monthly Frequency 9 2 1 0 Jan Feb Mar Apr May Aug Sep Jun Jul Oct Nov Dec Month

SINGV

– the convective-scale NWP system for Meteorological Service Singapore

- Collaboration: Met Office and Meteorological Service Singapore.
- ~4FTE/yr from each partner.
- Tropical, km-scale NWP R&D plus operational implementation target.
- Core Model R&D -> Evaluation -> DA -> Ensemble
 + Tech Infrastructure

- Downscaler uses a 1.5 km mesh, runs 2 times per day and produces 36h forecasts.
- Data assimilation system uses a 4.5 mesh, runs in full cycling with 3h assimilation windows and produces 12h forecasts from each analysis.
- Ensemble system uses 12 4.5km DS members, runs 4 times a day and produces 36h forecasts.

SINGV (DownScaler) started in real time at MSS in Feb 2015!

Version 2.0:

- Based on PS35 UKV ENDGame
 - No MURK aerosol
 - But L80 rather than L70
- Changes from Version 1
 - 1. P2A blended BL scheme
 - 2. Single 1.5 km domain
 - As opposed to version 1 = double nest
 - 1092 x 1026 x L80, dt=50s
 - Fixed not variable resolution
 - ~5 times cost of Version 1 configuration

Model (vn 2.0)

Radar Estimated Rainfall

and

Precipitation Forecasts from SINGV (UM), WRF-GFS, and WRF-ECM

SINGV – clumpiness (blobbiness)

Known Model Issues

- Cloud-scale biases
 - Too much heavy rain and too high peak rainfall rates.
 - Too strong and deep updrafts.
 - Not enough light rain.
 - Too many small cells, too few large if convection is well resolved.
 - Too few cells if under-resolved
- Organisation biases
 - Cells too circular if under-resolved, too elongated if well resolved and orientation tends to be too much along wind.
 - Lack of propagation of squall lines (noted particularly in Singapore).
- Biases in response to large-scale / boundary layer / diurnal forcing
 - Timing of initiation of convection.
 - Other timing issues.
 - Land-sea contrast issues in particular excessive convective rainfall over land and light rain over the ocean.
- Biases in response to driving model
 - Spin up effects at edge of domain
 - Errors passed from larger scale driving models.

SINGV configuration vn2.0 \rightarrow **vn2.1**

- Fixed the reconfiguration coding error
- Treatment of the convective boundary layers
 - 1. Applied the blended boundary layer approach
 - 2. Introduced stochastic temperature perturbations
- Increase of the mixing length in 3D Smagorinsky scheme
- Switched off the excessive graupel production

Improvements:

- Excessive rainfall reduced;
- Less intensive storm cells;
- Spin-up time reduced.

Counts of Storm Cells

(Storm cells are defined as spanning at least 12 model grid-boxes, with hourly rainfall in excess of 20 mm/hr in every grid-box)

SINGV configuration vn2.1 \rightarrow vn3.0

- The moisture conservation scheme
- Temporally correlated stochastic θ perturbations
- Stochastic moisture perturbations

Improvements:

• Areal coverage of rainfall

- Rainfall patterns are more realistic compared with vn2.1;

- More rainfall is produced over the sea than vn2.1.

The clumpiness was still an issue

SINGV configuration vn3.1 \rightarrow vn4.0

- Use of prognostic cloud cover scheme (PC2) instead of Smith's scheme.
- Revised stochastic boundary layer perturbations
- Revised moisture conservation

Remarks

- Cloud cover is too variable over tropics.
- Switch to the prognostic cloud cover scheme (PC2) from Smith's scheme made significant impact. Reason not fully understood yet!

Reduction in intense convection

August

November

Reduced clumpiness

Increase in light rainfall and reduction in high rainfall intensity gives the impression of reduced clumpiness

Improved squall lines

FSS score August, full SINGV domain

Light Rain

Heavy Rain

vn4.0 is of comparable skill

vn4.0 is more skilful than vn3.1

FSS score for November, full SINGV domain

Light Rain

Heavy Rain

vn4.0 is more skilful than v3.1

vn4.0 is more skilful than vn3.1

SINGV Data Assimilation

- Initial technique: 3D-Var cycling every 3hr
- Real time implementation: April 2016
- Consider 4D-Var: 2016
- Adding ensemble to DA:2017

SINGV DA Version 1: conventional observations
+ amsub + iasi + satwind + mtsatclear (with global bias
configuration)

SINGV DA Version 2: conventional observations + amsub + iasi + satwind + scatwind + airs + saphir (with SINGV specific configuration) + Singapore radar

Observation for SINGV

3DVAR

SINGV Data Assimilation System

Cycling DA produces more forecasts at one valid time, with reasonable consistency

Forecasts at the same valid time (left->right: T+3h, T+6h, T+9h and T+12h)

"Dryness" issue in the DA cycling system

DA is too dry.

Relative humidity at surface for (left) DS (T+3h) (right) DA (T+3h) 2016-05-24 03:00:00

DA produces much less rain.

Hourly precipitation for (left) DS (T+9h) (right) DA (T+6h) 2016-10-25 09:00:00

DS (downscaler)

DA (data assimilation)

Remarks: not a DA problem ?! May be due to model and lateral boundaries.

Experiments with different DA configurations

Precipitation scores for different forecasting schemes over a week (01-08 Feb 2017)

SINGV Ensemble Configuration

• Model settings

- Model: UM 10.6
- Resolution: 4.5 km
- Grid: 364x342 grid points
- Vertical levels: 80 levels (model top 38.5km)
- Forecast range: T+36
- Time step: 100 seconds

Operational details

- Real time (planned): by 31st March 2017
- Run 4 cycles per day (3, 9, 15, 21 UTC), the four cycles are driven from the T+3 dumps of 00/06/12/18z Global ensemble MOGREPS-G cycles
- Forecast length: T+36
- 12 ensemble members 1 control run + 11 perturbed members

• Initial conditions

- Initial conditions from global ensemble: MOGREPS-G
- Perturbations generated by Ensemble Transform Kalman Filter (ETKF).
- The 03 and 15 UTC cycles receive perturbations from the global ensemble members 1 to 11, whereas the 09 and 21 UTC cycles use perturbed members 12 to 22

Postage stamp map

SINGV fcst valid 20170522 09 UTC

Hourly Rainfall Probability

filtered unfiltered 0 S Φ 42 e D 0 9 20 40 60 80 100 1

SINGV prob of precip valid 20170522 10 UTC

prob. of precipitation [%]

Forecast valid at 20170522 10 UTC

Summary Plot

Temp>30°C

Wind>20kt

D

Forecaster's Evaluation

(MSS-UKMO joint effort)

- Focused on deterministic assessment of the forecasts
- Of course, with only a downscaler, it may not be expected that the model will perform well. We may need to wait for the inclusion of ensembles before the potential can be fully assessed

Assessment Criteria

Skills in rainfall prediction over Singapore and the surrounding region

- Spatial coverage of the rainfall;
- Structure and orientation of the rain cluster;
- ➢ Rainfall intensity
- 1. Does SINGV or WRF-EC provide value-added guidance in comparison with EC global model?
- 2. Does SINGV offer better guidance than WRF-EC?

Forecaster Evaluation

SINGV > EC Global > WRF-EC

- SINGV had captured this event relatively well
- EC Global had captured this event relatively well but had under-forecast the rainfall intensity
- WRF-EC missed this event.

Forecaster evaluation

WRF-EC > EC Global > SINGV

- WRF-EC had captured this event relatively well
- SINGV missed this event totally
- EC Global missed the rainfall over Singapore and Peninsular Malaysia

Remarks and Ongoing Work

- Convective-scale NWP in tropics, especially for Singapore, is a difficult problem
- SINGV has definitely helped put forward NWP challenges in the deep tropics
- Updates have been made in model physics to tackle some of the known problems and collaborative effort is needed to understand the issues
- Improvements are only incremental due to limited resources
- The current focus in model development is to test the grey-zone convection scheme
- SINGV DA will be focussing on LHN and tackling some of the issues
- SINVG EPS will be focussing on putting it to real-time
- In objective verification, we are working on issues on using GPM and Radar as references
- We are also working with forecasters on subjective evaluation, which will assess the usefulness of SINGV in operational applications