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Motivation: 12-hour forecast uncertainties



Flow dependent uncertainties 
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• Spread in -12hour 
zonal wind 
ensemble (in m/s) 
along the latitude 
circle 

• 3-month long 
experiment with a 
perfect model and 
12-hour cycle EnKF
data assimilation
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Flow dependency of the simulated 
forecast errors in EDA

0.7 N, ~96 hPa 9 N, ~96 hPa 45 N, ~200 hPa

3-h fc errors in the zonal wind, derived from the ECMWF ensemble 
(cy32r3) during 1 month (July 2007)

QJRMS, 2013

m/s



Growth of forecast uncertainties in ensemble 
prediction

lev45, ~150 hPa

lev55, ~290 hPa
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• ECMWF ENS
• Two weeks of 

data in May 2015
• Ensemble spread 

in the zonal wind  

m/s



Zonally-averaged forecast-error statistics 

+12 hour +24 hours +120 hours

ECMWF ensemble prediction system: two weeks of data in May 2015
Ensemble spread in zonal wind (m/s) 

m/s

Tellus A, 2017



Tropical analysis uncertainties: summary

Uncertainties in global analyses and short-range 
forecasts are largest in the tropics

 A lack of observations, especially wind observations
 Complex moist dynamics
 Data assimilation methodologies focused on the 

extratropics



Tropics and the global observing system

Global observations of wind profiles 

ADM-Aeolus observations of line-of-sight wind profiles 



Impact of tropical analysis uncertainties on the 
midlatitude forecasts

Day 3 Day 5 Day 7

• wind and geopotential height perturbations at 200 hPa level
• average of 30 simulations started on 1 January
• SPEEDY general circulation model, T30

Heating perturbation (up to 0.5 K/day) over Indian ocean 
and Maritime continent

PhD thesis research by 
Katarina Kosovelj



Decomposition of tropical heating perturbations 

1-day average response to the large-scale heating perturbation 

Total Unbalanced 200 hPaKelvin wave

850 hPa



Decomposition of the global response to the 
tropical heating perturbations 

14-day average response at 200 hPa to the large-scale heating perturbation 

Total

Unbalanced Kelvin wave

Balanced

Balanced n=1 Rossby



Decomposition of forecast errors (12-hour 
ensemble spread)

• Spread in 12-hr zonal wind forecast, model level close to 250 hPa
• The WIG spread is greater in the mid-latitudes in relation to waves developing on the 

mean westerly flow. 
• The EIG component is larger than the WIG spread in the tropics

Westward IGEastward IG

ROSSBYTOTAL

MWR, 2016



Distribution of tropical forecast-error 
variance among equatorial modes

Equatorial Rossby modes    

Equatorial inertio-gravity

K modes

500 hPa

100 hPa

QJRMS, 2005

Dataset from October 2000
10 member ensemble
Perturbed observations

Parabolic cylinder functions  
as basis functions applied on 
each level
Equatorial belt 20S-20N



Impact of the equatorial wave constraint on 
analysis increments

No KW, no Eql IG modesNo Eql IG modes

No Kelvin modeAll modes included

Single h observations at the equator

Kelvin wave coupling
is decisive for the 
structure of analysis
increments near the 
equator

Other equatorial
inertio-gravity waves
reduce the 
meridional
correlation scale, as 
well as effect the 
mass-wind coupling

QJRMS, 2005



Impact of the equatorial wave 
constraint on analysis increments

Single westerly wind obs at the EQ

Rossby waves Rossby, KW, MRG All waves

ε=0.1 ε=0.5 ε=0.9

Heckley et al., 1993, ECMWF proceedings

Parrish, mid 1980s, Daley 1993



Tropical moist dynamics and 4D-Var

a) b)

d) e) f)

c)

g) h) i)

j) k) l)

a) b)

d) e) f)

c)

g) h) i)

j) k) l)

Single moisture observation at the equator, 12-h 4D-Var 

Coupling between winds, moisture and aerosols in 4D-
Var

PhD thesis research by 
Ziga Zaplotnik

Simple (modelling) is beautiful 



Tropical moist dynamics and 4D-Var

a) b)

d) e) f)

c)

g) h) i)

j) k) l)

Single wind observation at the equator, 12-h 4D-Var 

a) b) c)

d) e) f)

a) b) c)

d) e) f)



Representation of the global forecast-error 
variances using the Hough functions

Estimate of the bkg error from 
the ensemble

MWR, 2016

Gy – projection on the vertical structure

Θ – projection on the meridionally part of
Hough harmonics

D – spectral variance density normalization

F – Fourier transform in the zonal direction

Entropy reduction

Forecast-error 
variance reduction

M. Fisher, 2003



Analysis and forecast uncertainties in Observing 
System Simulation Experiment with a perfect
model

Data Assimilation Research Testbed (DART), by Jeff Anderson and 
collaborators, http://www.image.ucar.edu/DAReS/DART/

Spectral T85 Community Atmosphere Model, CAM 4 physics

Long spin-up (from 1 Jan 2008) with the observed SST 
to reproduce nature run (‘truth’) 

Preparation of the observations from the nature run 

Preparation of the homogeneous observing 
network (Δ~920 km)

Assimilation cycle during three months 
(Aug-Oct) in 2008

No inflation

MWR, 2016



Decomposition of forecast errors (12-
hour ensemble spread)

• Spread in 12-hr zonal wind forecast, model level close to 250 hPa
• The WIG spread is greater in the mid-latitudes in relation to waves developing on the 

mean westerly flow. 
• The EIG component is larger than the WIG spread in the tropics

Westward IGEastward IG

ROSSBYTOTAL

MWR, 2016



Growth of the global forecast uncertainties

Perfect-model experiment
m/s

Zonally-averaged zonal wind spread in ensemble of 12-hr forecasts



Growth of the global forecast uncertainties

Perfect-model experiment
m/s

Zonally-averaged zonal wind spread in ensemble of 12-hr forecasts

m/sECMWF ENS

Maximum of analysis and short-term forecast uncertainties in the 
upper tropical troposphere is not due to model error



Spread of the analysis ensemble



Reduction of the forecast uncertainties by 
the assimilation

• Prior (12-hr forecast) - posterior (analysis) spread, normalized by the prior spread
• Spread reduction is greater in the mid-latitudes
• Spread is poorly reduced in the tropics

Westward IGEastward IG

ROSSBYTOTAL

MWR, 2016



Short-range global forecast errors in the 
perfect-model EnKF framework 

prior, zonal wind (pr-po)/pr, zonal wind

Spread of 12-hr forecast 
ensemble
3-month average

m/s %

(Prior – posterior)/prior 
ensemble spread 
(x,y,z) points averaged in time 
and zonally



EIG

WIG

ROT

k

The assimilation is most 
efficient in synoptic scales, 
for both balanced and IG 
motions but much more 
efficient for balanced. 

Efficiency = variance 
reduction as a function of 
zonal wavenumber

Data assimilation efficiency: variance reduction  

Covariance localization 
radius was 0.2 (around 
1300 km at Eq).

MWR, 2016



Impact of the covariance localization radius 

0.2 rad 0.4 rad 0.6 rad



Scale-dependent growth of the global forecast 
uncertainties towards saturations

Ensemble spread in each zonal 
wavenumber is normalized by 
its value at 50-day forecast 
range. 

TOTAL
0.9

0.6

Ensemble spread in different 
zonal wavenumbers is 
normalized by its initial value

Forecast was started on 1 Oct 2008 in a perfect model EnKF OSSE

Log(E(k,t)/E(k,0)]



IG spreadBalanced spread

Wrt to initial spread
May 2015 ENS data

Total 
spread

Scale-dependent growth of the global forecast 
uncertainties towards saturations in ENS



Summary and outlook

 Tropics are characterized by largest analysis uncertainties and largest 
growth of forecast uncertainties during the first 24-36 hours of the 
forecast 

 The uncertainties are on average larger on the large scales. Maximum of 
uncertainties is in the tropical upper troposphere. 

 Uncertainties are flow dependent. Uncertainties in wind and geo. height 
fields in the tropics are balanced about 50%. 

 In an OSSE with a perfect mode and EnKF, the covariance localization 
radius is important in the tropics.

 Flow-dependent ensemble -> fc-error variance spectrum of the day -> 
weights for the mass-wind constraint in the bkg-error term for various IG 
modes and Rossby modes of the day



Additional slides



Tropical data assimilation system 
including Rossby and IG wave constraints

 Application of parabolic cylinder functions as the basis functions for 
the representation of the background-error covariances

1

xy FFDPL 

Py – projection operator on the meridionally
dependent part of equatorial eigenmodes

D – spectral variance density normalization

F – Fourier transform operator
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History of Hough functions in data 
assimilation (1)

 Flattery, 1970s: NCEP OI based on the Hough functions

 D. Parrish, mid 1980s: computed correlations for single point 
in the tropics including the impact of KW and MRG waves

Single height observations at EQ

(h,h), Rossby+MRG (h,h), 
Rossby+MRG+KW, 
k=1-3

(h,u), 
Rossby+MRG+KW, 
k=1-3

Parrish, 1988, AMS proceedings



History of Hough functions in data 
assimilation (2)

 ECMWF, early 1990s: first formulation of 3D-Var used Hough functions

Single westerly 
wind obs at the EQ

Single easterly 
wind obs at the EQ

Single southerly 
wind obs at the EQ

ε=0.1 ε=0.1 ε=0.1

Heckley et al., 1993, ECMWF proceedings



History of Hough functions in data 
assimilation (3)

 ECMWF, early 1990s: first formulation of 3D-Var used Hough functions

Single westerly wind obs at the EQ at 500 hPa

ε=0.1 ε=0.5 ε=0.9

Heckley et al., 1993, ECMWF proceedings



Truth: ER n=1

Potential impact of ADM-Aeolus in the 
tropics: Rossby wave example

Reliable bkg-error variance spectrum

Poor bkg-error variance spectrum

Žagar et al.,MWR 2008

The spectrum of forecast 
error variance of the day is 
very important in the 
tropics



Growth of the global forecast errors in 
the perfect-model 

Perfect-model experiment

m/s

Žagar et al., 2016, MWR

Zonally-averaged zonal wind 
spread in ensemble of 12-hr 
forecasts

(Forecast– analysis)/forecast 
ensemble spread in each 
(x,y,z), averaged in time and 
zonally

Uncertainties in 12-hr fc Uncertainty reduction



Data assimilation efficiency: variance reduction  

The assimilation is most efficient in synoptic scales, 

for both balanced and IG motions

Efficiency = (po-pr)/pr

WIGEIGROSSBY

MWR, 2016



Scale-dependency of the 12-hr forecast 
error variances in EnKF with a perfect model

Distribution of the variance in analysis ensmeble looks very similar. 

As expected, largest variance is in synoptic scales and balanced 

modes (mid-latitudes) and in the large-scale Kelvin wave

WIGEIGROSSBY

Žagar et al., 2016, MWR



longitude

Flow dependent growth of forecast 
uncertainties in ENS

Mid-latitudes 45 N
Zonal wind (m/s) 
Ensemble spread

Tropics, 0.7 S 
Zonal wind (m/s) 
Ensemble spread

100 hPa 700 hPa

800 hPa300 hPa

2 Apr 2016, 00 UTC, ECMWF  ENS

m/s



Scale-dependent growth of forecast 
uncertainties:  classical approach

Partition of ECMWF ENS spread at 200 hPa level into rotational and divergent parts



Zonally-averaged ensemble spread in EDA

Žagar et al., 2013, QJRMS

3-hour ensemble spread in the zonal wind, cy32r3

m/s



Short term growth of simulated forecast 
errors in EDA in relation to flow

kkk

n

In the tropics, the short-range growth is largest in the Kelvin mode

The growth in WIG modes is accompanying the balanced variance 

growth in the midlatitudes

[Variance(12) – Variance(3)] / Variance(3)*100%

WIGEIGROT

Žagar et al., 2013, QJRMS

%



Scale and flow dependent representation of 
the ensemble reliability

A lack of variability 
is initially seen in 
subsynoptic 
balanced scales, 
and lateron in 
tropical IG modes, 
primarily the 
Kelvin mode
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ticŽagar et al., 2015, JAS

Dec 2014, 
Operational ECMWF 
ENS data



Growth of the ensemble spread w.r.t. 
initial spread as a function of zonal scale

IG spread

12

Balanced spread

24

168

k

Initially, spread growth is largest in the smallest scales and the 
synoptic scales of the IG modes (tropics)

Žagar et al., 2015, JAS



Growth of the IG spread w.r.t. initial 
spread

EIG spread
WIG spread

+24

k

IG 
spread

Žagar et al., 2015, JAS

Žagar et al., 2015, JAS



Short-range forecast error statistics, EDA

12-hr fc range

Almost half of the variance in short-term forecast errors is associated with the 
inertio-gravity modes. EIG dominates over WIG on all scales. Data from July 
2007.

ROT EIG WIG

~52% ~27% ~21%

EIG w/o KW

EIG with KW

Kelvin waves make about 15% 
of EIG fc-error variance



1D growth of forecast uncertainties
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n=1 Rossby mode

Growth of uncertainties in m=1 vertical mode in ECMWF 
ENS in May 2015

Kelvin mode Mixed RG mode

Žagar, 2017, Tellus A
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Lorenz, 1984

Scale-dependent limits of the growth 
of spread in ENS

wn 3 wn 7

wn 30wn 15

Dalcher and Kalnay, 1987

Growth of error variance for Z500 in the 
ECMWF model in early 1980s. The smaller 
the scale, the shorter the predictability limit



Scale-dependent growth of forecast 
uncertainties 

Vertical 
integral 
(all m)

Žagar, 2017, Tellus A

The first 
vertical 
mode 
(m=1)



IG spreadBalanced spread

Wrt to initial spread
May 2015 ENS data

Total 
spread

Growth of the spread w.r.t. initial spread as a 
function of the zonal scale 



Based on model-level data from the operational ECMWF ENS  in May 2015

• Global analysis and forecast uncertainties in the first vertical mode  as a 
function of the zonal wavenumber and meridional mode

• Only spread associated with Rossby modes (balanced dynamics) 

Žagar, 2017, Tellus A

Scale-dependent growth of forecast 
uncertainties 



Growth of the 3D integrated  uncertainties

3D integrated 
ensemble spread 
shown as log E(t) 
on various scales 
during 15 days of 
operational ECMWF 
ENS data in May 2015

Chaotic nature of 
atmospheric system is 
evidenced in the 
exponential growth of 
errors 

Total Planetary scales 

Synoptic scales

Subsynoptic scales

k=0-3

k=4-14

k>14

Unbalanced

Balanced

Total

Žagar, 2017, Tellus A



Fitting the growth of the integrated 
ensemble spread

Normalize data 
by initial spread

A new function fit 
to data that 
provides 
analytical 
estimate of the 
asymptotic 
curves



Scale-dependent growth of the global 
forecast errors towards saturations

Simulated forecast errors in different zonal wavenumbers normalized by 
their asymptotic values at 60-day forecast range

0.99

0.9

0.6

Žagar et al., 2017, Tellus A

2 day 
growth



Scale-dependent growth of the global 
forecast errors towards saturations

Simulated forecast errors in different zonal wavenumbers normalized by 
their asymptotic values at 60-day forecast range

0.99

0.9

0.6

Lorenz, 1984

Žagar et al., 2017, Tellus A



Tropics: impact on the midlatitudes
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• meridional wind 
perturbations along 50N at 
200 hPa level, 

• average of 30 simulations 
started on 1 January with 
heating perturbation in the 
Indian ocean/Maritime 
continent 

• SPEEDY general circulation 
model

Impact of tropical heating perturbations on midlatitudes

ongoing PhD research by 
Katarina Kosovelj

Longitude



Uncertainty partition into balanced and 
unbalanced components

Time 00 7-day fc

Balanced
spread

IG
spread

Time 24 

Žagar et al, 2015, JAS



Uncertainty partition into balanced and 
unbalanced components

Time 00 7-day fc

Balanced
spread

IG
spread

Time 24 

Žagar et al, 2015, JAS



Scale-dependent representation of analysis 
and forecast uncertainties 

Physical space (x,y,z,t)

x

z

y

Modal space (k,n,m,t)

u,v, T, q, ps

variables 

k

m

n

Balanced and 

inertio-gravity (IG) motion 

(eastward, EIG and 

westward, WIG) modes 

http://meteo.fmf.uni-lj.si/MODES

Balanced part of circulation is associated with the Rossby (quasi-geostrophic) part 
of eigensolutions to the linearized primitive equations. The unbalanced part 
projects onto the inertio-gravity eigensolutions that propagate eastward (EIG 
modes) or westward (WIG modes). 



MODES, http://meteo.fmf.uni-lj.si/MODES

http://meteo.fmf.uni-lj.si/MODES



Expansion of discrete data: vertical 
projection

X(l,j,s )= u,v,h( )
TT

X(l,j,s j )= Sm
m=1

M

å Xm(l,j) ×Gm( j)

An input data vector X is defined on the horizontal 

regular Gaussian grid and vertical sigma levels at time t:  

Projection of a single data point on j-th sigma level is performed on the 

precomputed vertical structure functions G, the horizontal Hough vector 

functions in the meridional direction and waves in the longitudinal direction: 

The vector Xm is obtained by the reverse transform of (1): 

Xm(l,j)=Sm
-1 u,v,h( )

j

T
Gm( j)

j=1

J

å (2)

(1)



Two kinds of Hough harmonic solutions for the 
horizontal wave motions

Frequencies of spherical normal modes for different equivalent depths

D=10 km D=1 km

D=100 m D=10 m

Žagar et al., 2015, GMD

Balanced 
Or 
Rossby-
type

Unbalanced 
Or 
Inertio-
gravity



HSFs are pre-computed for a 
given number of vertical 
modes, M

For every m=1,…,M, i.e. for 
every Dm

Meridional structure for 
Hough functions is 
computed for a range of the 
zonal wavenumbers K, 

k=-K,..,0,...,K

and a range of meridional
modes for the balanced, 
NROSSBY, a range of EIG, NEIG, 
and a range of WIG, NWIG, 
modes. 

R=NROSSBY + NEIG + NWIG

Meridional structure of Hough functions

Žagar et al., 2015, GMD



Expansion of discrete data: horizontal 
projection

The scalar complex coefficients χ are obtained as

The horizontal coefficient vector Xm for a given vertical mode is  

projected onto the Hough harmonics Hn
k(λ,φ,m) as 

The subscript n indicates all meridional modes including rotational (ROT), and 

eastward and westward propagating inertio-gravity (EIG and WIG, 

respectively) modes

Here, μ=sin(φ). 

Xm(l,j)= cn
k (m)Hn

k (l,j,m)
k=-K

K

å
n=1

R

å

(4)

(3)



Expansion of discrete data: energy 
product
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The partition of total energy into the kinetic and available potential energy for 
every vertical mode is written as :

Global energy product of the m-th vertical mode defined as
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Ensemble spread in modal space

The modal-space variance defined by (5) is 

equivalent to the total variance in the 

physical space defined as 

If the input fields to the projection are 

differences between the ensemble members 

n=1,..,N and the ensemble mean, the total 

variance in the modal space is defined as

The specific modal variance 

Σ2 is defined as

with the specific variance in physical space S2
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Žagar et al., 2015, JAS



Inertio-gravity circulation of the day


