

The Most Wanted Features

Michal Weis

16th Workshop on Meteorological Operational Systems

ECMWF Reading, United Kingdom, 1st–3rd March 2017

We develop different software products for daily operational needs of National Meteorological Services

1/3rd of ECMWF Member & Co-operating states use Visual Weather as operational forecasting platform

Visual Weather is being developed for many years, constantly updating its technology so it is very "fresh & modern".

Visual Weather internally has modular design, so only selected modules are operated. ... And there is a lot of different modules, satisfying different requirements.

To collect & manage requirements & ideas from user community, we annually conduct User Group Meeting to exchange know-how and to jointly collaborate on requirements.

And the winners are...

Main Panel Dashboard provides daily task list, weather monitoring and overview of situation, notifications

Graphical SIGMET Editing - polygon based editing with graphical depiction and consistent automatic encoding

Collaborative Feature Editing - to jointly create consistent forecast depiction over larger region by multiple meteorologists

Taxi to runway <?xml version="1.0"?><runway>02 </runway>

Annan - marinan - manan

....

Start

D TAF

Local

🙆 🥜 IWXXM TAF Message

Native IWXXM 2.0 integration and ICAO Annex 3 Amendment 77 support

 > >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

Alert Editor, first guess warning, issuing CAP alerts and integration to MeteoAlarm

Forecast production platform - authoring of forecast and generating multiple outputs

"Multi view" interactive display of multiple synchronized windows differing by time, elevation, model, ensemble or parameter

Roaming profile - tool to explore the atmosphere profile, its stability and other characteristics

Training Server simulation of real-life cases for training purposes, competence assessment tool

Internal math kernel, functional data processing by user equations

Expandability of Python API - custom functions, algorithms, integrations, processing

OpenGIS Web Services Web Map Service 1.3.0 (Time & Elevation BP) Web Coverage Service

2.1 (MetOcean Application Profile)

Web Feature Service +Transactional

..Kernel as Kernel L.DB.Parameters as Parameters tetime

ieveValueAtStationWithInterpolation():

```
ion = Geo.StationId.fromICAO('LZIB')
t = station.getPosition()
series = [ Kernel.QueryItem.mkPointQuery(point) ]
cessor = Kernel.GridProcessor(units = Kernel.u.T_CELS,
viMode = Kernel.gdvim.INTERPOLATE,
 viSource = Kernel.gdvis.ISOBARIC,
 tiMode = Kernel.gptim.INTERPOLATE_AFTER_QUERY)
recast = 4 * 3600
evel = Geo.GridLevel.fromString('382m')
esult = processor.decodeAndInterpolate(g_model, g_run, g_paramet
orint 'Value at %s (%s), level: %s, forecast: %dh' % (station, po
print result[0].value, result[0].unit
   forecast / 3600)
polygon.append(Kernel.mkStation(Geo.StationId.fromICAO('LZIB')))
calculateStatisticsOverArea():
polygon.append(Kernel.mkStation(Geo.StationId.fromICAO('LKPR')))
 polygon.append(Kernel.mkStation(Geo.StationId.fromICAO('LJLJ')))
 # first parameter is the polygon, second list of percentiles required.
  L_queries = [ Kernel.QueryItem.mkStatsQuery(polygon, [5, 10, 50, 5])
  result = processor.decodeAndInterpolate(&_model, &_run, & paramete
  # and 3rd count of histogram bins
             tighting over area', polygon.getLaLoPoints()
      g level, g dataset, l_queries)
```

OpenGIS Web Processing Service custom server-side value-added computations

Interactive map widgets for web pages & mobile, alongside with underlying dynamic Tiles (WMS)

Questions?

Michal.Weis@iblsoft.com • www.iblsoft.com

