Quantifying and reducing uncertainties

Work package 4
DWD, ECMWF, FFCUL, RIHMI, UNIBE, UNIVIE, UVSQ

ERA-CLIM2 Review Meeting Jan 19, 2017
Status of Deliverables

<table>
<thead>
<tr>
<th>Deliverable number</th>
<th>Deliverable title</th>
<th>Delivery date</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4.1</td>
<td>RS bias adjustments (UNIVIE)</td>
<td>20</td>
</tr>
<tr>
<td>D4.2</td>
<td>Updated RS bias adjustments (UNIVIE)</td>
<td>48</td>
</tr>
<tr>
<td>D4.3</td>
<td>QC for observations from FFCUL (FFCUL)</td>
<td>48</td>
</tr>
<tr>
<td>D4.4</td>
<td>Visualization tool for QC (FFCUL)</td>
<td>12</td>
</tr>
<tr>
<td>D4.5</td>
<td>QC for upper-air, surface, and snow obs. (RIHMI)</td>
<td>36</td>
</tr>
<tr>
<td>D4.6</td>
<td>Methodology for quantifying obs error (UBERN)</td>
<td>36</td>
</tr>
<tr>
<td>D4.7</td>
<td>Verification of precipitation against GPCC (DWD)</td>
<td>48</td>
</tr>
<tr>
<td>D4.8</td>
<td>Global energy, water, carbon cycles (ECMWF, UNIVIE, UVSQ)</td>
<td>48</td>
</tr>
<tr>
<td>D4.9</td>
<td>Upper air data qc (UBERN, RIHMI)</td>
<td>24</td>
</tr>
<tr>
<td>D4.10</td>
<td>Comparison with other reanalyses (UNIVIE; ECMWF)</td>
<td>48</td>
</tr>
<tr>
<td>D4.11</td>
<td>Low frequency variability and trends (ALL)</td>
<td>48</td>
</tr>
<tr>
<td>D4.12</td>
<td>Uncertainty of input parameters for carbon budget (UVSQ)</td>
<td>20</td>
</tr>
<tr>
<td>D4.13</td>
<td>Confidence intervals on carbon fluxes (UVSQ)</td>
<td>48</td>
</tr>
<tr>
<td>D4.14</td>
<td>Comparison of CTESSEL, ORCHIDEE flux estimates (ECMWF, UVSQ, UNIVIE)</td>
<td>48</td>
</tr>
</tbody>
</table>
D4.2
Updated Radiosonde bias adjustments

- Improvements on RS-T in various aspects
 - Smaller trend heterogeneity, more stations, extension back to 1939
 - Annually varying adjustments
 - Adopted for ERA-5, paper in preparation

- Humidity adjustments
 - Back to 1979, not yet all stations included
 - Paper to be submitted
D4.3, 4.5, 4.6, 4.9
Quality Control Activities

• Reports almost completed (4.5 by end of January)
• Essential to feed back flags, corrections into source data sets
• Not only data but also metadata
• 6-monthly update cycle agreed
ERA-CLIM Metadata-Base (surface stations)

<table>
<thead>
<tr>
<th>Date</th>
<th>Start</th>
<th>End</th>
<th>Time Resolution</th>
<th>Estimated Station Days</th>
<th>WS</th>
<th>DIR</th>
<th>Ps</th>
<th>Pst</th>
<th>saT</th>
<th>grT</th>
<th>soT</th>
<th>rH</th>
<th>sH</th>
<th>Dew</th>
<th>Wet</th>
<th>Cl</th>
<th>Sun</th>
<th>Prec</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/1902</td>
<td>01/12/1952</td>
<td>31/12/1952</td>
<td>5</td>
<td>18628</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>01/01/1864</td>
<td>31/12/2007</td>
<td>12</td>
<td>52596</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/01/1953</td>
<td>31/12/1974</td>
<td>3</td>
<td>6940</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/01/1953</td>
<td>31/12/1974</td>
<td>3</td>
<td>6940</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/01/1947</td>
<td>31/12/1974</td>
<td>3</td>
<td>9131</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/01/1953</td>
<td>31/12/1974</td>
<td>3</td>
<td>6940</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/01/1953</td>
<td>31/12/1974</td>
<td>3</td>
<td>6940</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coimbra: 1955 – Change of barometer
Lisbon: 1896, 1994 – Change of barometer
Porto: 1923 – Station closed during 1920-1922 – probable change of barometer

The list contains the breakpoints that coincide with metadata changes and one for which we can make a case for a non-documented metadata change (1923 in Porto is not documented).
D4.7 Verification of Precipitation
D4.8, D4.10, D4.11
Global energy, water, carbon cycles
Comparison with other reanalyses
Low frequency variability and trends

- 5-6 papers on coupled energy budgets
- Carbon cycle diagnostics using CERA20C as driving input
- Story line for reports prepared by UNIVIE
- CERA20C quite competitive
Obs-CERA20C standard dev. 700 hPa 1959/60, from 00h,12h launches
Same for Obs-NOAA 20CR V2c
Same for Obs-ERApreSAT
Obs-Reanalysis departure
Standard deviation profiles 1959/60

Falkland Islands

Vienna

CERA20C an
ERA20C an
20CR v2c an

preSAT an
preSAT bg

8K
6K
Carbon reanalysis: evaluation of CERA-20C ORCHIDEE simulation

- Land Use variant: LUCMIP6, LUCMIP5
- Meteo Forcing: CRUNCEP
- Model version: ORC-CMIP5
- CO₂ Inversion: MACC2

Net Carbon fluxes

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>North</th>
<th>Tropic</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtGCC / Year</td>
<td>-2.5</td>
<td>-1.2</td>
<td>-1.8</td>
<td>-0.9</td>
</tr>
</tbody>
</table>

Legend: Green for LUCMIP6, Red for LUCMIP5, Blue for CRUNCEP, Purple for ORC-CMIP5, Orange for MACC2
Tropical Temperature Trends 1979-1999

WP4 progress report January 19, 2017
Fig. Annual time series Africa.

Fig. Annual time series India and Monsoon area.

Fig. Annual time series Eurasia.
Data portals, visualization tools

- Continuous development until end of project

- http://www.ecmwf.int/en/research/climate-reanalysis
- http://transcom.globalcarbonatlas.org/
- http://srvx1.img.univie.ac.at/raobvis/
Conclusion

• High capacity has been built for
 - for full coupled reanalysis of 20th century
 - Correcting data and metadata errors
 - Evaluation of fluxes through climate system
 - Including carbon cycle for long reanalysis
 - Answering pressing research questions (e.g. low frequency variability)

• Full reanalysis of 20th century will harvest the seeds planted
 - EU should do the harvest!
 - Support via research projects needed
Upper air data base

- Ensure continuous updating, versioning
- Data format should be fit for Copernicus Climate Data Store and for assimilation into reanalyses
- Upper air data inventory at FFCUL, METEO-France
Rationale for EU follow on project

- Assimilation in presence of strong observation density gradients
- Coupled diagnostics, flux validation
- „Ultimate“ solution for RS-T using GPS-RO as reference – GAIA-CLIM
- Evaluation of ensembles
 - apply EMOS, BMA to reanalysis ensembles, observation ensembles?
- Prove positive impact of rescued data
continued

• Update and include new ISPD version
• Continue data rescue (e.g. METEOSAT1 images, whaling log books) and feedback analysis
• Rescued data often not in shape to be assimilated or not CDR
• Carbon data assimilation? Feasible?
• Coupled long term SST assimilation
Achievements to be promoted into Copernicus

- Homogenized UA data consistent with GPS-RO – consistent anchor back to beyond 2001
- Energy budget diagnostics
- After further tests: RH and wind homogeneity adjustments.
- Feed QC flags into sources
• WP2-WP4 interaction
• Meteorological input for carbon models crucial
• CRUNCEP increases Primary production fluxes by 50% compared to CERA20C, net fluxes sometimes opposite
• Soil freezing important for co2 fluxes in extratropical boreal regions