Ocean assimilation algorithm developments, with a focus on ensemble DA in NEMOVAR

A. Weaver¹ M. Chrust², B. Ménétrier³, Y. Yang⁴, H. Zuo²

> ¹CERFACS ²ECMWF ³Météo-France ⁴ENSEEIHT/CERFACS

> > January 23, 2017

Outline

1 "New" versus "Old" NEMOVAR

2 Preliminary experiments with ensemble variances

- 3 Developments towards a fully hybrid B
- Plans for the final year

Progress in using ensembles with NEMOVAR **E**CERFACS

T2.3: To improve the ocean analysis component using ensembles D2.3: Ensemble-based covariance estimates. (Code and documented results; Month 46)

- NEMOVAR has been largely rewritten to facilitate the use of ensembles in defining the background-error covariance matrix (**B**).
- The diffusion-based correlation operator has been completely revised to make it more general and to improve its scalability (Weaver *et al.* 2016, QJRMS).
- The new code has been merged into the trunk of the central NEMOVAR repository at ECMWF.
 - Source code management under Git.
 - Atlassian tools for collaborative software development (JIRA, Bitbucket).
- The new code has been integrated into the prepIFS/SMS running environment at ECMWF (M. Chrust, H. Zuo).
 - Multi-annual reanalysis experiments (with ensembles) and comparison with "Old" NEMOVAR now possible.

Scalability of 3D-Var with the new diffusion algorithm **Z**CERFACS

 $1/4^{\circ}$ global ocean model

(Courtesy M. Chrust, ECMWF)

Old vs New NEMOVAR with "same" parameter settings **Z** CERFACS

Mean temperature from 6-month experiment from 01/02/2010

(1.e-1 K/s): Min= -6.69, Max= 8.80

(Le-1K/s):

20100102 bckint Z-0.00000 195801 mean

Mean salinity from 6-month experiment from 01/02/2010

ERA-CLIM2 General Assembly, Vienna, 16-19 January 2017

Old vs New NEMOVAR with "same" parameter settings **Z**CERFACS

Mean and RMS fit to salinity observations for 6-month expt. from 01/02/2010

Old vs New NEMOVAR with "same" parameter settings **Z** CERFACS

Salinity increment profile on 01/02/2010

Outline

1 "New" versus "Old" NEMOVAR

2 Preliminary experiments with ensemble variances

3 Developments towards a fully hybrid B

Plans for the final year

• The covariance model has the form

$$\mathbf{B}_{\mathrm{m}}~=~\mathbf{K}_{\mathrm{b}}\,\mathbf{D}_{\mathrm{m}}^{1/2}\,\mathbf{C}_{\mathrm{m}}\,\mathbf{D}_{\mathrm{m}}^{1/2}\,\mathbf{K}_{\mathrm{b}}^{\mathrm{T}}$$

- Ensembles are used to estimate the variances $(D_m \rightarrow D_e)$ and the local correlation tensor $(\kappa_m \rightarrow \kappa_e)$ associated with the diffusion operator in C_m .
- The estimates are filtered using a diffusion operator with an optimally-based algorithm to determine the filtering scale (Ménétrier *et al.* 2015).
- A hybrid parameter formulation has also been developed:

$$\mathbf{D} = \alpha_{\rm m}^2 \, \mathbf{D}_{\rm m} + \alpha_{\rm e}^2 \, \mathbf{D}_{\rm e}$$
$$\boldsymbol{\kappa} = \gamma_{\rm m}^2 \, \boldsymbol{\kappa}_{\rm m} + \gamma_{\rm e}^2 \, \boldsymbol{\kappa}_{\rm e}$$

where \mathbf{D}_{m} and $\boldsymbol{\kappa}_{m}$ are modelled ("climatological") estimates, and $\alpha_{m,e}$ and $\gamma_{m,e}$ are constant weights.

Ensemble variances using the ECMWF ocean reanalysis **Z**CERFACS

5-member ensemble (4 perturbed + 1 unperturbed) from 31/05/2015. Background temperature error standard deviations at 100 m.

ERA-CLIM2 General Assembly, Vienna, 16-19 January 2017

Modelled ("climatological") versus hybrid variances

Mean temperature bias (100-200m) from 2-year experiment, 20 members (first expt, no tuning, equal weights to each hybrid component).

Modelled ("climatological") versus hybrid variances

Mean temperature RMS fit (100-200m) from 2-year experiment, 20 members

ZCERFACS

Modelled ("climatological") vs hybrid variances

Mean salinity bias and RMS fit (100-200m) from 2-year experiment, 20 members

ZCERFACS

ERA-CLIM2 General Assembly, Vienna, 16-19 January 2017

Outline

1 "New" versus "Old" NEMOVAR

2 Preliminary experiments with ensemble variances

3 Developments towards a fully hybrid B

Plans for the final year

• Hybrid **B** has the form

$$\mathbf{B} = \beta_{\mathrm{m}}^2 \, \mathbf{B}_{\mathrm{m}} + \beta_{\mathrm{e}}^2 \, \mathbf{B}_{\mathrm{e}}$$
 ($+\beta_{\mathrm{e}}^2 \, \mathbf{B}_{\mathrm{EOF}}$)

where $\beta_{\rm m}^2$ and $\beta_{\rm e}^2$ are constant weights.

 $\bullet~B_{\rm e}$ is a localized sample estimate of the covariance matrix:

$$\boldsymbol{\mathsf{B}}_{\mathrm{e}} \;=\; \boldsymbol{\mathsf{K}}_{\mathrm{b}} \, \boldsymbol{\mathsf{D}}_{\mathrm{e}}^{1/2} \, \left(\boldsymbol{\mathsf{L}} \circ \widetilde{\boldsymbol{\mathsf{X}}} \, \widetilde{\boldsymbol{\mathsf{X}}}^{\mathrm{T}}\right) \, \boldsymbol{\mathsf{D}}_{\mathrm{e}}^{1/2} \, \boldsymbol{\mathsf{K}}_{\mathrm{b}}^{\mathrm{T}}$$

where the columns of $\widetilde{\textbf{X}}=\textbf{D}_{\rm e}^{-1/2}\,\textbf{K}_{\rm b}^{-1}\,\textbf{X}^{\rm b}$ are transformed background ensemble perturbations.

• The practical form of the Schur product term used in NEMOVAR is

$$\left(\mathsf{L} \circ \widetilde{\mathsf{X}} \, \widetilde{\mathsf{X}}^{\mathrm{T}}\right) \mathsf{v} = \sum_{p=1}^{N_{\mathrm{e}}} \left(\widetilde{\mathsf{x}}_{p} \circ \mathsf{L} \big(\widetilde{\mathsf{x}}_{p} \circ \mathsf{v} \big) \big) \quad \text{ where } \quad \widetilde{\mathsf{X}} = \left(\widetilde{\mathsf{x}}_{1}, \dots, \widetilde{\mathsf{x}}_{_{N_{\mathrm{e}}}} \right)$$

where \mathbf{L} is represented by a diffusion operator.

Localization modelling

• Four formulations of L have been implemented in NEMOVAR: 1 No localization:

$$\mathsf{L}=\left(egin{array}{ccc} 1\ dots\ 1\ \end{array}
ight)\left(egin{array}{cccc} 1&\cdots&1\ \end{array}
ight)$$

$$\boldsymbol{\mathsf{L}} = \operatorname{diag}\left(\boldsymbol{\mathsf{L}}_{1},\ \ldots,\ \boldsymbol{\mathsf{L}}_{\textit{M}}\right)$$

Multivariate and common localization for each variable:

$$\mathsf{L} = \left(\begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right) \mathsf{L}_1 \left(\begin{array}{c} 1 & \cdots & 1 \end{array} \right)$$

Multivariate and separate localization for each of the M variables:

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_1^{1/2} \\ \vdots \\ \mathbf{L}_M^{1/2} \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{T/2} & \cdots & \mathbf{L}_M^{T/2} \end{pmatrix}$$

• The hybridization weights and localization functions are determined using an optimally-based algorithm (Ménétrier and Auligné 2015; B. Ménétrier, unpublished research).

ZCFRFACS

- The algorithm is applied offline; it requires the evaluation of statistical moments given as input the ensemble perturbations and randomized vectors that sample the modelled \mathbf{B}_{m} .
- The algorithm has been interfaced with NEMOVAR (Y. Yang).

Spatially dependent localization

At each grid point, sample using the nearest neighbours at increasing distances.

The procedure can be used to estimate a spatial map of localization scales.

▲ CERFACS

Example of surface T-T correlations at a point in the North Atlantic using two different ensembles sizes (10 and 50)

Outline

1 "New" versus "Old" NEMOVAR

2 Preliminary experiments with ensemble variances

- 3 Developments towards a fully hybrid B
- Plans for the final year

- Major code developments are complete and have been integrated into the ECMWF system.
- Need to resolve the discrepancy between Old and New NEMOVAR (with similar parameter settings).
- First results (no tuning) with ensemble/hybrid variances are encouraging but more work is needed.
 - Estimation/tuning of parameters (inflation factor, hybridization weights).
 - Ensemble-estimation and filtering of the local correlation tensor.
- In parallel, continue evaluating the fully hybrid **B**.
- Further improvements to computational aspects of the diffusion operator.
 - Implicit solver.
 - Normalization factors.
 - Coarse grid for "large" scales.
- Several visits planned to ECMWF in 2017 to work on ensemble DA.