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Using ensemble data assimilation to  
diagnose flow-dependent forecast reliability
Mark J Rodwell

Weather forecasting is fundamentally a probabilistic task due to the growth of unavoidable initial-state 
uncertainty. Moreover, the growth rates of these uncertainties can depend on the atmospheric flow  
so that predictability may vary from day to day. The established approach to representing uncertainty  
in probabilistic forecasting is to make an ensemble of forecasts, each starting from a slightly different 
initial state and including a different realisation of model uncertainty. A key question is how to assess  
the ensemble’s ability to represent the flow-dependent growth of uncertainty.

Results suggest that such assessments are not easy to make at the medium range due to complications 
associated with error propagation and non-linear interactions. Using a specially developed ensemble 
reliability budget, appropriate for shorter-range assessments within the data assimilation window, these 
issues can be minimised and flow-dependent deficiencies in representing uncertainty can be identified. 
An analysis of the reliability budget can also help identify the causes of deficiencies in representing 
uncertainty. Results are illustrated for a flow situation where mesoscale convection is likely to occur  
over North America and which often results in reduced predictive skill for Europe several days later.

Forecast reliability
Figure 1 is a schematic representation of an ensemble forecast with ensemble members (blue curves) 
diverging in their prediction of two weather parameters (represented by the x- and y-axes) with increasing 
lead time t (coming out of the plane). Note that if we could produce an infinite number of ensemble 
members, they would describe the probability distributions depicted by the blue ellipses. A key question 
for numerical weather prediction is what constitutes a good ensemble forecast. Clearly users would  
like the ensemble distribution to be as narrow (or ‘sharp’) as possible in order to reduce uncertainty. 
However, this only makes sense if the eventual truth (black curve) lies within the ensemble distribution. 
More precisely, we require that the truth can be considered as another sampling of the ensemble 
distribution, and when this is true in general, the ensemble is said to be ‘reliable’. 

If we assume that forecast bias is negligible or accounted for, the next aspect of the ensemble distribution to 
assess in terms of reliability is its variance. The standard approach is to compare the mean ensemble variance 
(averaged over a set of forecast start dates) with the mean squared error of the ensemble mean (Error2):

Error2 = EnsVar + Residual     (1)

Figure 1 Schematic diagram depicting an ensemble forecast. The green and red polygons form the basis of the 
spread-error and ‘EDA reliability budget’ diagnoses of reliability, respectively. These are explained in Boxes A and B.
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This equation is valid at reasonably long lead times (perhaps greater than 2 days, as depicted by the right-
hand distribution in Figure 1) when forecast error is sufficiently large for analysis error to be neglected in the 
calculation of Error2. EnsVar in (1) is the mean sample variance of the ensemble (scaled to take account of 
the finite size of the ensemble), and the Residual represents any ensemble variance deficit associated with 
deficiencies in reliability, together with sampling uncertainties (due to the limited number of forecast start 
dates available). For a reliable system (and assuming no analysis error) the expected value of the residual  
is zero. The green triangle in Figure 1 depicts the theoretical basis for this ‘spread-error relationship’ and,  
for the interested reader, its derivation is discussed further in Box A.

Using data from the ECMWF operational ensemble (ENS), Figure 2a shows northern hemisphere annual 
means of ensemble ‘spread’ and root mean square error (RMSE) of the ensemble mean (i.e. the square 
roots of EnsVar and Error2) for 500 hPa height for the years 1996, 2005 and 2014. The reduction in RMSE 
at all lead times together with the better match with spread indicates substantial improvements in both 
sharpness and reliability over the years. Notice in particular the more realistic ‘exponential’ shape of the 
spread and error curves for 2014 over the first 5 or 6 days, which are much flatter at short ranges. These 
improvements have been achieved through many incremental changes to the forecasting system. These 
include the introduction of the Ensemble of Data Assimilations (EDA) and the development of the ‘stochastic 
physics’ parametrization, which represents, amongst other things, the upscale cascade of uncertainty from 
subgrid scales Improvements in the observation network and in the modelling of observation errors have 
also been important. 

Figure 2b shows time series of the spread and RMSE for six-day forecasts for Europe from five of the 
world’s leading operational forecasting centres. There cannot be such a good match between spread  
and RMSE on a day-to-day basis. Notice, however, the agreement between centres in terms of the 
variation in spread. This agreement suggests flow-dependent fluctuations in underlying predictability.  
The main reason for making ensemble forecasts is to be able to represent these flow-dependent 
variations in uncertainty and predictability. For a fully reliable ensemble forecast system, the ensuing  
flow-dependent probabilities for a given event will match the outcome frequencies when binned and 
averaged over a sufficiently large sample – as displayed in ‘reliability diagrams’. Such correspondence 
is important to users because it allows them to make optimal decisions based on their own cost/loss 
models. Future steps towards such a reliable ensemble system are likely to come from more detailed 
flow-dependent diagnosis of model and observation error.

Derivation of the spread-error relationship
Figure 1 is a schematic representation of an  
ensemble forecast. The blue ellipses represent  
the initial and forecast distributions that one  
might obtain with an infinite ensemble size.  
For a finite ensemble size, m, the ensemble 
mean (dark blue dot) will not generally lie at the 
distribution mean (grey dot). For lead times ≥ 2 
days, the analysis (pink dot) is often considered  
an adequate approximation for the truth (black dot). 

The green triangle then shows how the (squared) 
error of the ensemble mean (right-hand side of the 
triangle) can be decomposed into the sum of the 
independent (squared) deviations of the truth and 
the ensemble mean from the distribution mean

(the other two sides of the triangle). Assuming 
zero bias, the expected squared truth deviation 
can be written as the variance of the ensemble 
distribution plus a residual that indicates any 
systematic deficiency in this variance. 

Because the ensemble members are independent, 
the expected squared ensemble-mean deviation 
can be written as 1/m times the ensemble 
distribution variance. The inclusion of this 
ensemble-mean variance, together with the desire 
for unbiased estimation of these terms using the 
available data, leads to the EnsVar term including 
an         scaling factor in (1).

A

m +1
m 1
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Difficulties in diagnosing flow-dependent reliability 
Rodwell et al. (2012) highlighted reduced predictive skill for six-day forecasts for Europe in initial flow situations 
where a trough exists over the North American Rockies (e.g. as part of a Rossby wave), together with high 
Convective Available Potential Energy (CAPE) ahead of it. Such a situation is conducive to the formation of 
strong mesoscale convective systems (MCSs), which can interact with the jet stream. The uncertainty in 
intensity, location and timing of these MCS features (and possibly larger-scale dynamical instabilities coupled 
to orography) are thought to be important for the subsequent decrease in downstream skill.

The reliability of ensemble forecasts initiated from a particular flow regime, such as the trough/CAPE 
pattern, can also be assessed using (1). Figure 3 shows, for geopotential at 200 hPa (the jet stream 
level), the terms in (1) for a composite of the 54 cases during the period 19 November 2013 – 12 May 
2015 (when cycle 40r1 of ECMWF’s Integrated Forecasting System was operational) for which the initial 
conditions closely matched the trough/CAPE pattern, using the same method as in Rodwell et al. (2012). 
Large mean squared errors (Error2) at forecast day 1 (D+1) can be seen over the Great Lakes region  
of North America (Figure 3a), associated with MCS activity. These errors are reasonably well predicted,  
on average, by the ensemble variance (EnsVar, Figure 3b). As the lead time increases, this error/spread 
signal is seen to propagate east across the North Atlantic (D+3 in Figure 3d,e and D+5 in Figure 3g,h). 
Notice in particular the large Error2 at D+5 close to Western Europe (Figure 3g). This error is more 
than 15% greater than for the ‘non-trough/CAPE’ composite (consisting of the remaining about 1,000 
forecasts, not shown), but the variance is actually slightly smaller than in the non-trough/CAPE composite 
(not shown). The right-hand panels in Figure 3 show the Residual (Error2 minus EnsVar). The positive 
residual near Western Europe at D+5 (Figure 3i) suggests that the ensemble variance might be too small, 
but this is not statistically significant at the 5% level (saturated colours indicate statistical significance).  
The statistically significant negative residuals seen elsewhere in Figure 3 are generally not specific  
to the trough/CAPE situation.

The conclusion here is that there is broad agreement over the medium range between spread and error  
in this flow-specific situation, but it is difficult to identify the causes of residual differences. The crossing 
of the blue ensemble trajectories in Figure 1 represents the fact that errors are growing within a non-linear 
regime, interacting and dispersing through the action of teleconnections and waves in general. It is these 
effects that make it inherently difficult to assess flow-dependent ensemble reliability in the medium range, 
and even harder to identify the causes of any lack of reliability. By the same argument, it is also these 
effects that make it difficult to use off-line calibration techniques to improve flow-dependent reliability. 
Such improvements need to be made within the model itself and require more precise diagnostic tools.
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Figure 2 (a) Northern hemisphere annual means of ensemble spread and root mean square error (RMSE) of the 
ensemble mean for 500 hPa heights, and (b) time series of D+6 spread and RMSE for Europe from five of the world’s 
leading operational forecasting centres: ECMWF; UKMO (UK Met Office); JMA (Japan Meteorological Agency); CMC 
(Canadian Meteorological Centre); NCEP (US National Centers for Environmental Prediction). Data retrieved from the 
TIGGE archive and interpolated to a 2.5° regular grid, with RMSE calculated relative to each centre’s own analysis. 
The northern hemisphere includes latitudes north of 30°N, and Europe is defined here as 12.5°W–42.5°E, 35°N–75°N.
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The EDA reliability budget
In order to facilitate a more local and flow-dependent assessment of reliability, it proves useful to consider 
much shorter lead times (about 12 hours, as depicted by the central distribution in Figure 1), when 
errors are growing within a more linear regime and have not had so much time to interact or to disperse 
geographically. In anticipation of the development of a more seamless EDA/ENS system in the future, 
it makes sense to apply this test to the background forecasts of the EDA. These background forecasts 
include the most relevant part of the stochastic physics parametrization – the stochastic perturbation of 
physical tendencies (SPPT) scheme – and avoid potential complications associated with the re-centring 
and singular vector perturbations presently used in the initialisation of the ENS. At these short lead times, 
uncertainty in our knowledge of the truth cannot be neglected. We could incorporate an EDA analysis 
variance term into our reliability test to take account of this aspect, but we choose to work in observation 
space since the modelling of observation error (depicted by the orange ellipse in Figure 1) represents 
a more foundational aspect of the data assimilation process. Because observation errors cannot be 
neglected, we talk about ‘departures’ from observations rather than ‘errors’ from the truth. The new  
‘EDA reliability budget’, the basis of which is depicted graphically by the red pentagon in Figure 1 and 
which is discussed further in Box B, is a decomposition of the mean squared departures of the form.

Depar2 = Bias2 + EnsVar + ObsUnc2 + Residual     (2)

As before, EnsVar is the scaled sample variance, but now of the EDA background forecasts. ObsUnc2  
is the sample variance of the observation errors as modelled within the assimilation system. Bias2 is  
the square of the estimated remaining bias of the model relative to the observations after the application  
of observation bias correction methods. Note that bias is sometimes neglected in the traditional spread-
error assessment, but this risks the possibility that ensemble variance is erroneously inflated to achieve 
agreement with the squared error. The Residual quantifies the ensemble variance deficit (plus any 
deficiencies in the modelling of observation error). Non-zero values in either the Bias2 term or the  
Residual are indicative of reliability deficiencies. Further details of the development of this budget  
are given in Rodwell et al. (2015).

To obtain a better understanding of the meaning of the terms in (2), and of the equation’s utility in the 
assessment of flow-dependent ensemble reliability, it is useful to consider some examples. There are 
two key questions to answer: Is the EDA reliability budget able to identify statistically significant reliability 
deficiencies when it is analysed for a particular flow regime? If so, then what are these deficiencies?
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Figure 3 Terms in the spread-error relationship (1) for 200 hPa geopotential based on the ‘trough/CAPE’ composite  
for (a)–(c) D+1; (d)–(f) D+3; and (g)–(i) D+5. Statistical significance at the 5% level (from a null hypothesis of zero)  
is indicated by saturated colours and is deduced using a Student’s t-test applied to the set of 54 forecasts.
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Assessment of flow-dependent reliability
The EDA reliability budget will be computed for the trough/CAPE composite. First, however, it is  
useful to consider EDA reliability in a less flow-dependent context by computing the budget for the 
non-trough/CAPE composite. Figure 4 shows, for the non-trough/CAPE composite, the terms in (2) 
together with the observation density, for 200 hPa zonal wind speed, based on aircraft measurements 
and their corresponding values in the EDA background. Aircraft observations are numerous over central 
North America at this cruising altitude (Figure 4f) and, indeed, they are particularly influential in the data 
assimilation system. Observation uncertainty (Figure 4d) is computed from the independent observation 
errors assigned within the EDA. When averaged onto a 2°x2° grid, the observation uncertainty is naturally 
smallest where the observation density is largest. The EDA reliability budget decomposes the squared 
departure term (Depar2; Figure 4a) into contributions from the bias (Bias2; Figure 4b), ensemble variance 
(EnsVar; Figure 4c), observation uncertainty (ObsUnc2; Figure 4d) and a Residual term (Figure 4e). 
The spatial structure of the Depar2 term in the non-trough/CAPE composite largely follows that of the 
observation uncertainty. There is also a contribution from the ensemble variance, and possibly a more 
uniform offset associated with the bias. Figure 4e shows, however, that there is a small but statistically 
significant residual term, which suggests some general deficiency in reliability. This is not investigated 
further here because we are interested in flow-dependent reliability.

Figure 4 Panels (a) to (e) show the terms in the ‘EDA reliability budget’ (2) applied to 200 hPa zonal winds for the 
non-trough/CAPE composite. The data used are aircraft observations between 185 and 215 hPa that are actively 
assimilated, and the corresponding winds interpolated from the EDA background forecasts. Panel (f) shows the density 
of aircraft observations assimilated within the EDA control. To reduce noise, an average of at least one observation  
per 2°x2° grid box per 12-hour analysis cycle is required for the budget to be plotted. Values significantly different  
from zero at the 5% level are shown with saturated colours.
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Derivation of the EDA reliability budget
At short lead times, uncertainty in our 
observational knowledge of the truth cannot be 
ignored. The red pentagon in Figure 1 shows how 
the spread-error relationship can be extended  
to include bias and random observation error.  
The departure of the ensemble mean from  
the observation is now written in terms 

of the remaining four sides of the pentagon.  
Assuming constant bias, these four terms  
are either independent or uncorrelated, so  
the expected square of the decomposition  
again simply involves the squares of the individual 
differences. Estimation with the available data  
then leads to the ‘EDA reliability budget’ (2).

B
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Causes of flow-dependent reliability problems
The ensemble variance deficit following trough/CAPE situations could be due to deficiencies in stochastic  
physics – either in magnitude or formulation. Note, for example, that the ‘Stochastic Kinetic Energy 
Backscatter’ (SKEB) scheme is not included in the EDA background. The relatively low resolution of 
the background (T399, corresponding to a horizontal resolution of about 50 km) may also necessitate 
stronger stochastic physics in these mesoscale convection situations. Such a conclusion about 
deficiencies in stochastic physics is consistent with the results of Rodwell et al. (2015), who showed 
that the EDA reliability budget (applied to mid-tropospheric temperatures observed by AMSU-A satellite 
microwave channel 5) was able to highlight regional deficiencies in variance that were sensitive to 
changes in stochastic physics. For example, positive residuals in convective regions were deteriorated 
by turning off the stochastic physics. At the same time, negative residuals within subtropical anticyclone 
regions (where the mid-tropospheric meteorology is largely characterised by time-mean descent and 
clear-sky radiative cooling) were improved by turning off the stochastic physics.

There are, however, other possible causes for the residual seen in the MCS example. For example, ‘analysis 
tendency and increment’ diagnostics (Rodwell & Palmer, 2003) suggest that, for the trough/CAPE situation, 
the net physical heating within MCS events is placed too low in the atmosphere (not shown). One can 
hypothesise that this may weaken the interaction in the momentum field between the jet stream and t 
he MCS outflow, which could be another reason for the apparent lack of ensemble variance. Hence one  
can imagine situations where reliability deficiencies are associated with flow-dependent systematic error.

Although ruled out in the example shown, the EDA reliability budget is also sensitive to observation error 
assignment. This can be considered useful because a good modelling of observation error is also important  
for the reliable initialisation of ensemble forecasts. There can be situations where the residual term is most 

Figure 5 shows the EDA reliability budget terms for the trough/CAPE composite. Comparison of Figure 5 
with Figure 4 shows increased departures around the Great Lakes in the trough/CAPE composite. Larger 
departures are to be expected because of the strong (and less predictable) convection liable to be taking 
place. The increased ensemble variance indicates more forecast uncertainty in this region. Notice, however, 
that this increase does not fully account for the increased departures, and consequently the Residual term 
(note the different shading interval) increases markedly too in the region associated with MCS activity and 
has roughly twice the magnitude of the ensemble variance. One possibility is that the ObsUnc2 term does not 
increase sufficiently in these convective situations. However, aircraft wind observations are thought to be quite 
accurate (they are assimilated without bias correction) and they are probably dense enough in this region (≥60 
per 2°x2° grid box per 12 hours, and with little change in density) to rule out an increase in representativeness 
errors for the upper-tropospheric wind field.  Hence it is likely that the background variance is strongly deficient 
in these trough/CAPE (and MCS) regimes. From a diagnostic development point of view, the key result here 
is that the EDA reliability budget is able to identify flow-dependent deficiencies in reliability. Next we consider 
what this budget can tell us about the root causes of reliability deficiencies.
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Figure 5   As Figure 4, but for the trough/CAPE composite.
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clearly associated with the assignment of observation error variances, for example in regions where residuals 
of different signs are found for different observation types and are thus less likely to be associated with 
ensemble variance errors. While these observation error variances are already estimated by a variety of means, 
such as ‘Desroziers statistics’, Rodwell et al. (2015) demonstrated, for surface pressure observations over the 
oceans from ships and buoys, that the EDA reliability budget may also be useful in this regard. It is likely that 
there will be situations where deficiencies in both stochastic physics and the assignment of observation error 
are important. In such situations, additional information might be required to resolve the ambiguity.

In some situations, the bias term in (2) can also highlight errors in the ensemble distribution. For example, 
the EDA reliability budget for the AMSU-A satellite microwave channel 5 indicated significant biases off 
the west coast of South America, possibly associated with undetected shallow cloud in the observations. 
While (observation) bias is legitimately assumed to have been accounted for in the data assimilation 
process, it is clearly worth including this term in (2) from a diagnostic perspective.

Summary and outlook
A necessary condition for ‘reliable’ ensemble forecasts is that ensemble variance accurately represents 
the flow-dependent growth of initial and model uncertainties. A key question is how to diagnose 
deficiencies in this ensemble variance. For a particular initial flow known to be associated with reduced 
predictability, the traditional spread-error relationship was not able to identify the causes of medium-
range variance deficiencies. This is partly because, by the medium range, errors are growing within  
a non-linear regime, interacting and dispersing. To minimise such issues, it is useful to look at the shorter 
timescales associated with the background forecasts of the Ensemble of Data Assimilations (EDA).

At these shorter lead times, as with data assimilation itself, uncertainties in our observational knowledge 
of the truth must be accounted for. This leads to the derivation of an ‘EDA reliability budget’ (Rodwell  
et al., 2015) that decomposes mean squared departures (of the background ensemble mean relative  
to the observations) into squared-bias, ensemble-variance and observation-uncertainty terms, together 
with a residual that closes the budget. Results show that the residual (and bias) terms of the EDA 
reliability budget can identify regional and flow-dependent deficiencies in reliability. Although ambiguities 
may still arise, it is hoped that the EDA reliability budget will be a useful tool to diagnose our modelling 
of the non-linear fluid-dynamical/physical system (including, in future, the development of stochastically 
formulated physical parametrizations), our modelling of the observation operators (radiative transfer etc.), 
and our modelling of observation error.

For reduced forecast uncertainty, it is also important to increase the sharpness of probabilistic forecasts 
through reduced initial uncertainty. Subject to the ensemble being reliable, sharpness is chiefly addressed 
through improved observational information and data assimilation methods and can therefore be largely 
addressed separately from the modelling aspects associated with reliability.

ECMWF’s proposed new strategy foresees the development of a more seamless EDA/ENS system,  
as depicted schematically in Figure 1. The use of a consistent model (same physics, stochastic physics 
and resolution) and consistent initialisation of the EDA background and ENS will mean that EDA reliability 
results like those presented here should facilitate improvements in medium-range reliability too. As lead 
time increases through the medium range and beyond, slower processes such as those associated with 
the land surface, ocean and sea ice also become important in the forecast. By examining reliability at all 
lead times, and representing uncertainties close to their sources, it may be possible to ensure that errors 
associated with these slower processes are also well represented.
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