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A new grid for the IFS
Sylvie Malardel, Nils Wedi, Willem Deconinck, Michail Diamantakis,  
Christian Kühnlein, George Mozdzynski, Mats Hamrud, Piotr Smolarkiewicz

ECMWF will implement a resolution upgrade for high-resolution forecasts (HRES) and ensemble forecasts 
(ENS) in spring 2016. HRES will then be run on a grid with a grid-point distance between neighbouring 
points of approximately 9 km instead of 16 km in the current configuration.

In the Integrated Forecasting System (IFS), many calculations are not carried out in grid-point space 
but in ‘spectral space’, where meteorological fields are represented by a sum of wave functions called 
spherical harmonics. As part of the resolution upgrade, ECMWF will move from a ‘linear’ to a ‘cubic’ grid 
by increasing the number of grid points used to represent each wavelength while keeping the number  
of spherical harmonics constant.

At the same time, it will use an octahedron-based method to reduce the number of grid points towards  
the poles. The resulting new ‘cubic-octahedral’ grid brings significant benefits in terms of computational 
efficiency and effective resolution.  

From linear to cubic
The spectral transform method (Box A) has been applied successfully at ECMWF for more than 30 years, 
with the first spectral model introduced into operations at ECMWF in April 1983. The spectral transform 
method was introduced to numerical weather prediction (NWP) following the work of Eliasen et al. (1970) 
and Orszag (1970), who achieved high efficiency by partitioning the computations between a grid-point 
and a spectral representation at every time step.

In a spectral transform model such as the IFS, the horizontal wind, the temperature and the surface 
pressure have a discrete representation in two different spaces. In grid-point space, the representation 
of the fields is intuitive: each field is known by its value at each point of the model grid. The field 
discretisation in spectral space is more abstract. The idea is to represent the fields by a sum of analytical 
functions, the spherical harmonics, such that the sum of the spherical harmonics closely matches the 
field at each grid point. Each field is then known by the set of coefficients associated with the spherical 
harmonics in the sum (Box A). Each spherical harmonic has a characteristic horizontal wavelength, 
which is given by the value of its total wavenumber n. The wavenumber n indicates how many of the 
characteristic horizontal wavelengths are needed to go around the globe at the equator. The wavelength 
associated with the wavenumber n is given by 2πa/n, where a is the Earth’s radius. The larger the 
wavenumber (the smaller the wavelength), the finer the scale represented by the spherical harmonic. 
The maximum wavenumber in the sum used to represent the meteorological fields, nMAX , is the spectral 
truncation number of the model. The larger the truncation number, the smaller the scales potentially 
represented by the spectral approach. In spectral space, mathematical operations such as differentiation 
or integration are computed analytically using the series of spherical harmonics.

The accuracy of the transformation from grid-point space to spectral space and back is assured  if the 
grid is a Gaussian grid, i.e. characterised by N specially determined quadrature points along a meridian 
between the pole and the equator, the ‘Gaussian latitudes’, and their associated ‘Gaussian quadrature 
weights’ used to compute the spectral coefficients (Box A). Several choices can be made to pair the 
maximum wavenumber of the spectral truncation, nMAX , with the number of latitude circles between  
the pole and equator, N, which characterises the Gaussian grid.

In the current so-called linear grid, nMAX = 2N – 1. A spectral transform using a linear grid represents 
the smallest wavelength 2πa/nMAX by 2 grid points. Two other choices are the ‘quadratic’ grid and the 
‘cubic’ grid, which represent the smallest wavelength by 3 and 4 points, respectively. The names ‘linear’, 
‘quadratic’ and ‘cubic’ stem from the ability of the different grids to accurately represent linear, quadratic 
and cubic products in the equations. 

The resolution of the IFS is indicated by specifying the spectral truncation nMAX prefixed by the acronym 
TL (for triangular–linear), TQ (for triangular–quadratic), TC (for triangular–cubic) or TCo (for triangular–
cubic-octahedral, see below). For example, the resolution of the current HRES is TL1279, a linear grid 
truncated at nMAX = 1279. 
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Higher eff ective resolution
Until 1998, a quadratic grid was used in the IFS to avoid the aliasing resulting from the computation of the 
Eulerian advection. With the implementation of the semi-Lagrangian advection scheme, a linear grid was 
introduced to enable fi ner scales in the spectral representation for a given grid resolution. However, recent 
experience suggests that the importance of non-linear processes increases with increasing resolution, 
thus exacerbating the problem of aliasing and requiring computationally expensive de-aliasing fi lters 
to suppress poorly resolved or misrepresented motions (Wedi, 2014).

The notion of resolution in an NWP model is more complex than just the grid spacing. In fact, selected 
processes are computed at coarser resolutions (e.g. radiation) and similar techniques may be applied in future 
to other physical processes. Moreover, the eff ective resolution of a model depends on the level of implicitly 
or explicitly applied fi ltering. Such fi ltering can be inherent in the equations used. For example, it would be 
impossible to resolve vertically propagating acoustic waves with a hydrostatic or an anelastic system of 
equations, whatever the time and space resolutions, as such waves are fi ltered by these equations. Some 
numerical algorithms may also be a source of signifi cant fi ltering. Well-known examples are the eff ect of 
decentring in time-stepping schemes or damping in low-order interpolation. In addition, the fi ltering applied 
on boundary forcings such as the orography can be signifi cant for the eff ective model resolution.

By defi nition, the cubic discretisation, where nMAX = N – 1, fi lters wavenumbers between N and 2N 
(i.e. wavelengths between 2 and 4 times as long as the grid spacing). With such a discretisation, no numerical 
fi lter is needed apart from a small amount of numerical diff usion to eliminate any accumulation of energy at the 
wavenumber of the spectral truncation, and a damping layer at the model top to avoid artifi cial wave refl exion 
inside the computational domain. In addition, as shown in Figure 1, the cubic discretisation can stably support 
an orography with more variance in the small scales, thus providing the same spectral representation as that 
obtained from the original dataset for all wavenumbers almost up to the truncation limit. A cubic grid with a 
given truncation thus implies a higher eff ective resolution than a linear grid at the same and even at a higher 
truncation number. 

Global spectral transforms
In the IFS, the horizontal wind, the virtual 
temperature and the surface pressure are 
transformed to spectral space and back to 
grid-point space at every time step. All the water 
variables and the passive tracers, e.g. specifi c 
humidity and prognostic cloud and precipitation, 
are kept in grid-point space because they are not 
needed for any of the computations in spectral 
space and because the spectral transforms can 
violate the positivity of the transformed fi eld, 
in particular for non-smooth fi elds.

A direct spherical harmonics transformation of a fi eld 
Φ (λ,θ) known at each longitude λl and latitude θk 
is a Fourier transformation in longitude, followed by 
a Legendre transformation in latitude of the Fourier 
coeffi  cients Φm at each zonal wavenumber m: 

where wk is the Gaussian weight for the latitude k 
and         are the normalised associated Legendre 
polynomials for the zonal wavenumber m and the 
total wavenumber n. In spectral space, the fi elds are 
known only by their set of spectral coeffi  cients Φm

n.

The discrete Fourier transform is computed 
numerically very effi  ciently by using a Fast Fourier 
Transform (FFT). The discrete Legendre transforms 

require the accurate discrete computation of the 
sum over the Legendre polynomials, which is 
accomplished by a Gaussian quadrature at the 
K=2N special quadrature latitudes of the Gaussian 
grid between the two poles (the number of latitude 
circles between pole and equator, N, is used for 
the GRIB-encoded data).

The inverse discrete Legendre and Fourier transforms 
using a triangular spectral truncation nMAX (i.e. 0 ≤ n 
≤ nMAX and −n ≤ m ≤ n) return the fi eld in grid-point 
space, at each point of the Gaussian grid.

Recent concerns about the computational cost of 
the Legendre transform have been mitigated by a 
fast Legendre transform which exploits similarities 
of the associated Legendre polynomials to simplify 

the computations (Wedi et al., 2013). Further 
computational acceleration can be expected from 
using modern hardware accelerator technologies. 
However, the parallel communications involved in 
the data transfer within transpositions from grid-
point space to spectral space and back, at every 
time step of the model, remain a concern on future 
computing architectures (Wedi et al., 2015).

A
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As Figure 2 shows, the aliasing control required for the linear grid also has a significant impact on global 
mass conservation: the linear grid is associated with a steady increase in the mass conservation error 
over time while the cubic grid is nearly perfect without a mass fixer.

Consequently, the spring 2016 resolution upgrade (IFS cycle 41r2) will introduce a cubic spectral 
transform grid, with nMAX = 1279 and N = 1280 latitude circles between the pole and the equator  
instead of N = 640 in the current system.
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Figure 1 Variance of the orography as a function of 
the total wavenumber for different linear and cubic 
discretisations in the IFS.

Figure 2 Global mass conservation error for 10-day 
forecasts at different resolutions: TL1279 with a time 
step of ∆t = 600 s, TC1279 with ∆t = 400 s, TCo1279 
with ∆t = 400 s. For comparison, TL2047 with ∆t = 400 s 
is also shown. The chosen time steps are optimized  
for meteorological accuracy and efficiency at the  
given resolution.
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Figure 3 Computational cost relative 
to the current TL1279 as a function of 
the number of latitude circles between 
the pole and the equator, N. The green 
bars represent the relative cost of linear 
discretisations, the red bars that of 
cubic discretisations. The blue bars, 
shown for reference, represent the ‘grid 
factor’, the ratio between the number of 
points for a given reduced Gaussian grid 
divided by the about 2.1 million points 
at the current operational resolution 
TL1279 (i.e. a multiplication by about  
4 of the cost for a doubling of N).

Lower computational cost
Figure 3 shows the evolution of the computational cost of a forecast as a function of the grid resolution N. 
The blue ‘grid factor’ bars show how the cost would grow if it increased linearly with the number of points 
on the grid. It can be seen that the cost of a forecast using linear or cubic discretisations grows faster 
than the grid factor. However, for high resolutions the cost of the global communications in the spectral 
transforms significantly penalizes the linear grid compared to the cubic grid.

The greater computational efficiency of the cubic grid can also be seen in Figure 4, which shows 
the number of forecast days that can be produced per day depending on the number of available 
supercomputer cores. It can be seen that cubic discretisation requires a significantly lower number of 
cores to achieve the same number of forecast days than linear discretisation using the same physical grid.
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How to generate an octahedral reduced Gaussian grid
1. Imagine each hemisphere of the globe is divided 

into 4 quarters, with each quarter corresponding 
to one face of an octahedron (left).

2. Start with 20 points, i.e. 5 per quarter, at the 
Gaussian latitude closest to the pole (middle).

3. Add one point per quarter for each new 
Gaussian latitude towards the equator,  
i.e. 4 more points per Gaussian latitude circle.

4. Because of the curvature of the Earth, the 
spacing between the grid points along a latitude 
circle varies with the latitude. It is slightly wider 
in the mid-latitudes than at the equator  
and near the pole (right).

B

Last latitude
before the pole

dx

dx

Octahedral reduced Gaussian grid
The choice of the spectral truncation and the number of latitude circles of the Gaussian grid is not sufficient 
to generate the IFS grid because it does not determine the number of grid points in the zonal direction  
at each latitude circle. If the same number of points is used for each latitude circle in a full Gaussian grid,  
the zonal resolution near the poles is substantially higher than the zonal resolution at the equator. Such  
a configuration generates a strong anisotropy of the discrete horizontal representation of the fields, 
potentially risks numerical instabilities and carries a significant computational cost due to the large number 
of points near the poles. For the past two decades, ECMWF has used a reduced grid (Hortal & Simmons, 
1991), in which the number of points on each latitude circle is reduced towards the poles, keeping the 
relative grid-point distances approximately constant. This reduction lowers the number of points by 
approximately 30% without significant loss of meteorological accuracy in the spectral transforms.

A new method to reduce the number of grid points towards the poles has been explored for the next 
resolution upgrade of the IFS, both to optimize the total number of points around the globe and to 
introduce a regular reduction of the number of points per latitude circle towards the poles. The design  
of this new grid is inspired by a regular triangular mapping onto an octahedron, which corresponds  
to a reduction of 4 points per latitude circle, one per face of the octahedron (Box B). The resulting  
grid is called the ’cubic-octahedral reduced Gaussian grid’.
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Figure 4 Computational capacity 
expressed in forecast days per 
day as a function of the number of 
supercomputer cores for the linear 
(TL2047) and the cubic (TC1023) 
discretisations associated with  
the same Gaussian grid N = 1024.
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The nominal resolution of the grid in the zonal direction is not as uniform around the globe as in the 
original reduced Gaussian grid (Figure 5), but the number of points per vertical level is significantly lower 
(for the N = 1280 grid, the original reduced grid has about 8.5 million points against 6.5 million for the new 
octahedral grid). In practice, this saves another 22% of total computation time. With the current reduced 
Gaussian grid, the number of points per latitude circle is constrained to be a multiple of 2, 3 and 5 by the 
Fast Fourier Transform (FFT) algorithm FFT992 originally developed at ECMWF by our former colleague 
Clive Temperton (Temperton, 1983). The cubic-octahedral reduced Gaussian grid will be used in the IFS 
together with the FFT package FFTW (http://www.fftw.org/), which efficiently allows any number of points 
per latitude circle.
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Figure 5 Primary meshes generated around the 
N = 24 reduced Gaussian grid points with 3.75 
degrees (or approximate grid-point distances  
of 416 km). The shading represents the effective 
grid spacing of the median dual mesh, which is 
the mesh used for finite-volume computations,  
as explained by Smolarkiewicz et al. (2015).  
The shading is calculated as the square root  
of the local dual mesh area. The octahedral mesh 
(right) has a locally more uniform dual-mesh 
resolution than the original mesh (left). The coarse 
resolution is chosen for illustrative purpose only.

The spectral transform method may become computationally inefficient in the future due to the 
communication overhead of the global spectral transformations. To address this risk, alternative numerical 
methods that rely only on nearest-neighbour information are being developed at several Member State 
weather services and also in the context of the PantaRhei project at ECMWF (Smolarkiewicz et al., 
2015). The recently investigated finite-volume module (FVM) can provide a more efficient and scalable 
way of computing differential operators in the IFS, but the accuracy of the approach depends also on 
the underlying mesh which defines the shape of the elementary volumes around which the computations 
are made. This is illustrated by results from numerical simulations of an idealised baroclinic instability 
using the FVM, as shown in Figure 6. Here, the more uniform mesh which is built around the grid points 
provided by the octahedral versus the original reduced Gaussian grid results in higher accuracy  
and substantially reduced unphysical flow distortions.

Figure 6 Idealised baroclinic wave test case using the finite-volume module of the IFS being developed at ECMWF, 
showing meridional wind component after 8 days of simulation for (a) the original reduced Gaussian grid and  
(b) the octahedral reduced Gaussian grid.
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Figure 7 Representation of the Alps at (a) TL1279 and (b) TCo1279.
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Figure 8 Accumulated 24-hour total precipitation for 24-hour forecasts starting from 15 July 2015 00 UTC in the Horn 
of Africa (Ethiopia, Djibouti) near Lake Tana for (a) the operational system (o-suite) at TL1279 and (b) the experimental 
system (e-suite) at TCo1279. The red dots in (a) show the location of spurious ‘grid-point storms’ where the predicted 
accumulated precipitation is larger than 100 mm.
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Figure 9 Total precipitation rate at 21 
UTC during a severe event near Cannes 
on 3 October 2015 according to (a) Radar 
Mosaic observations, (b) a 3-hour forecast 
produced by the operational system 
(o-suite) at TL1279 and (c) a 3-hour 
forecast produced by the experimental 
system (e-suite) at TCo1279. The 
flash floods generated by intense and 
stationary convective systems during  
this event killed 20 people.



S. Malardel et al. A new grid for the IFS

8 doi:10.21957/zwdu9u5i

Summary of benefits
The cubic-octahedral spectral transform discretisation called TCo1279, with a spectral truncation  
at nMAX = 1279 and a Gaussian grid with N = 1280 latitude circles between the pole and the equator,  
offers superior filtering properties at higher horizontal resolutions, an improved representation of orography, 
improved global mass conservation properties, and substantial efficiency gains. It also works well  
with more scalable, locally compact computations of derivatives and other properties that depend  
on nearest-neighbour information only.

With the cubic discretisation, the filtering of the spectral orography is reduced. As shown in Figure 7, 
the increased variance shown in Figure 1 directly translates into a sharper representation of the resolved 
orographic forcing in grid-point space.

Thanks to the optimized representation of smaller resolved weather features, problems such as  
‘grid-point storms’ have been completely eliminated from the new system, as illustrated by Figure 8.

The resolution upgrade concerns not just HRES but also ensemble forecasts (ENS), the Ensemble of Data 
Assimilations (EDA) and the 4DVAR assimilation system. As a result of the cubic grid’s superior filtering 
properties, the level of filtering of the 4DVAR trajectory is now identical to that of the forecast model, and 
the initial analysis and evolving forecast have the same kinetic energy spectrum across the entire range 
of wavenumbers (not shown). Results of the evaluation being carried out in preparation for the resolution 
upgrade in 2016 indicate an improved effective resolution and exciting improvements to medium-range 
weather forecasts, as illustrated in a case study by Figure 9.

Details on the resolution upgrade can be found at  
https://software.ecmwf.int/wiki/display/FCST/Horizontal+resolution+increase
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