
Aim and Scope

Expectation– Maximization (EM)
Here we use the Expectation– Maximization (EM)   
algorithm for estimating the weights w  based on the 
performance of each model during the training 
period and the unknown parameters of the mixture 
model for likelihood function.  
In brief, the EM algorithm casts the maximum        In brief, the EM algorithm casts the maximum        
likelihood problem as a ‘‘missing data’’ problem. The 
missing data may not be actual data. Rather, it can 
be a latent variable that needs to be estimated. Two 
situations will be evaluated :
1-The likelihood is estimated based on the known z  1-The likelihood is estimated based on the known z  
considering a predefined-categorized climatic      
conditions (e.g. Below Normal/ Normal/ Above 
Normal) and each ensemble member  corresponded 
to those defined categories.
2- Finding the optimal z  based on the EM  algorithm  
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Concept

Building on existing state-of-the-art of climate  prediction 
models that are available,the purpose of this research  
activity will be to explore the general usefulness of     
seasonal forecasts for the application side mainly water 
resources planning and managment. 
The outcome of this research is highly valuable for 

     Developing early drought alert systems, 

     Real time ensemble streamflow prediction      Real time ensemble streamflow prediction 

     Components of water balance

     Agricultural insurance  

among other applications once has been established .at 
operational centers. 

This study introduces a framework to quantify                    
uncertainties associated with sub-seasonal to interannual 
climate predictions. A framework is provided for Bias     
correction and Calibration of real-time forecasts based on 
hindcsast data from seasonal GCM outputs for   variable 
of interest. It is based on postrprocessing ensemble of  
forecasts  from a probabilistic point of view. 
From single value - deterministic to ensemble-based  From single value - deterministic to ensemble-based  
probabilistic forecasting, the framework can convey      
forecast uncertainty in a user relevant form.

Aim and ScopeAim and ScopeAim and Scope

ConceptConceptConcept

Aim and ScopeAim and ScopeAim and ScopeAim and Scope

Future Work

    The proposed framework will be applied to support 
water resources planning and drought prediction as 
a univariate analysis for (precipitation) over west of 
Iran. Next, the framework will be developed for         
bivariate analysis of temperature-precipitation      
analysis to see whether a joint perspective provides 
added value in different lead times considering 
better skill of models in temperature prediction at 
longer lead times if there is any  dependence           
between two variables.

Framework Implementation 

Posterior Analysis

Monte Carlo Markov Chain (MCMC)
If we have a conjugate prior (Gaussian for instance), 
it can be an easy calculation to obtain the posterior, 
and then we can sample from it. 
However, sometimes conjugate or semiconjugate However, sometimes conjugate or semiconjugate 
priors are not available or are unsuitable.  In such 
cases, it can be difficult to sample directly from the 
posterior; Markov Chain Monte Carlo (MCMC) will 
be applied to sample from posterior and estimate its 
mean and variance for producing a probabilistic map 
of variable of interest. 

Likelihood Estimation

The continuous improvements in seasonal climate      
forecasting have made it possible to provide more skillful 
and tailored forecasts. Therefore, any potential             
predictability can significantly help for operational       
management decisions for example in hydro energy and 
agricultural sectors.
With the increasing size of ensemble members provided With the increasing size of ensemble members provided 
by operational as well as research canters, now we can 
understand climate predictability better at subseasonal 
to interannual time scales.
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On the Importance of Model Uncertainty Quantification

State-of-the-art climate predictions still contain many sources of uncertainty, in particular those arisen from model uncertainty. These uncertainties may obscure the 
analysis and interpretation of underlying processes at the spatiotemporal scales. 
Despite the fact that ensemble forecasts address the major sources of uncertainty, they exhibit biases and dispersion errors and therefore are known to improve by 
calibration or statistical post-processing.

Subseasonal to interannual Predictability 
and Prediction Skill

Mixture models are widely used as computationally  
convenient representations for modeling complex    
probability distributions.
In a fully Bayesian treatment of the mixture modeling In a fully Bayesian treatment of the mixture modeling 
problem, conditioning on the observed data leads to a 
posterior distribution over the number of  components. 
This is mainly important to quantify model uncertainty. 
Specifically, the skill of climate models may be different 
in various climatic conditions and this is the case where 
mixture models might improve the overall result 
(Probabilistic forecasts of variable of interest ) in a 
multi-model ensemble  framework based on Bayesian 
Model Averaging.
Developing Bayesian Model Average (BMA)
Bayes’ theorem provides an approach to update the 
probability distribution of a variable (e.g. precipitation) 
Bayes’ theorem provides an approach to update the 
probability distribution of a variable (e.g. precipitation) 
based on information newly availabl (NMME hindcast 
data) by calculating the conditional  distribution of the 
variable given this new information.
The updated (conditional) probability distribution           
reflects the new level of belief about the variable. 

If ϑ = (θ1, . . . , θK, η) are unknown parameters that need 
to be estimated from the data then, as noted earlier, from 
a Bayesian perspective all information contained in the 
data y about ϑ is summarized in terms of the posterior 
density p(ϑ|y), which is derived using Bayes’ theorem:
p(ϑ|y)    p(y|ϑ)p(ϑ)
Considering a predicted climatological variable y, the   Considering a predicted climatological variable y, the   
corresponding observational data y , and K model        
forecasts {f , f  ,…, f  } of variable y.

In the method of BMA, we assumed that each model   In the method of BMA, we assumed that each model   
forecast, f  , is associated with a conditional PDF,  g(y|f ), 
that can be represented by a probability density function. 
Under the law of total probability, the BMA predictive 
model, given observational data y  , can be  expressed as

where
y:predicted climatological variable 
 y : the corresponding observational data, and y : the corresponding observational data, and
{f , f  ,…, f  }:  K model forecasts of variable y
p (fk|yT) is the posterior probability of forecast k
w  : weight of model k 
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