Uncertainty quantification of atmospheric transport and dispersion backtracking using an ensemble approach

Pieter De Meuter1,2, Johan Camps1 & Andy Delcloo1 & Piet Termonia1,3

1 Belgian Nuclear Research Centre, SCK·CEN, Mol, Belgium; 2 Royal Meteorological Institute of Belgium, RMIB, Brussels, Belgium; 3 Ghent University, Ghent, Belgium

E-mail: pieter.de.meuter@SCKCEN.be

Introduction

Atmospheric transport and dispersion backtracking is important for the verification regime of the Comprehensive Nuclear Test-Ban-Treaty, which bans nuclear explosions worldwide. Knowledge of the uncertainty on atmospheric transport and dispersion backtracking gives more confidence in the analysis of nuclear test explosion signals picked-up by the International Monitoring System (IMS). Here we present an ensemble approach to quantify uncertainty and apply the technique on recent radioxenon measurements taken by the IMS.

Methods

On the 6th of January 2016, the Democratic People’s Republic of Korea have announced a nuclear bomb test at the Punggye-ri Nuclear Test Site (see Fig. 2 for the location). Seismic wave signals were quickly picked up by the IMS. From analyses (CTBTO, 2016), the location and time of the event have been determined to be near the Punggye-ri Nuclear Test Site, on the 6th of January at 01:30 UTC. However, radionuclide observations are necessary to discriminate between conventional and nuclear explosions. Since the nuclear test took place underground, only a fraction of certain radionuclides can seep to the atmosphere. Radioxenon is most likely to seep through the rocks.

We consider six 133Xe samples taken by the IMS (Table 1; see Fig. 2 for the location of the stations). Using the FLEXPART model (Stohl et al., 2005) in backward mode (Seibert and Frank, 2004), we have backtracked each radioxenon sample. FLEXPART is driven by numerical weather data: we have used 50 perturbed members and the control forecast of the Ensemble Data Assimilation of the European Centre for Medium-Range Weather Forecasts (ECMWF).

FLEXPART outputs Source-Receptor-Sensitivity fields (SRS; M), which can be folded with a source term field (S) to obtain simulated concentrations at the IMS stations:

\[c_{\text{sim}} = \sum_{i,j} M_{ij} S_{jn} \]

where (ij) are spatial indices and n denotes the time index.

Since \(S_{jn} \) is fixed for each (ij,n), we can calculate the correlation between the observed concentrations \(c_{\text{obs},ij,n} \) and the corresponding simulated concentrations \(c_{\text{sim},ij,n} \) (Becker et al, 2007):

\[\text{correlation} = \frac{\text{cov}(c_{\text{obs},ij,n}, c_{\text{sim},ij,n})}{\text{var}(c_{\text{obs},ij,n}) \times \text{var}(c_{\text{sim},ij,n})} \]

Results

Fig. 2 shows spatial maps of the correlation between the SRS and the observed concentrations for different times. At all selected times, the correlation reaches high values for certain regions. The correlation exhibits a peculiar shape due to the complex terrain of the Korean Peninsula. By looking at the percentage of ensemble members that have a correlation above 0.75, we can narrow down the possible source regions (Fig. 2, bottom row). The backtracking calculations link possible source locations with possible release times. However, since a priori we do know neither the source location nor the release time of the observed 133Xe, we do not know which couple of source location versus release time is true. Results show that, amongst other locations, the Punggye-ri Nuclear Test Site can be considered as a possible source location, showing a high correlation with the observations.

Conclusions

Six 133Xe radioxenon activity concentrations have been measured recently at two IMS stations (Table 1). Using FLEXPART and the 50+1 member Ensemble Data Assimilation of ECMWF, we have backtracked the samples to their possible sources. Results show that the ensemble approach can be useful in support of the Comprehensive Nuclear Test-Ban-Treaty verification regime by providing an uncertainty quantification.

References:

Table 1. 133Xe samples showing anomalously high radioxenon activity concentrations.

<table>
<thead>
<tr>
<th>Station name</th>
<th>Collection start</th>
<th>Collection stop</th>
<th>Activity concentration (mBq/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN38</td>
<td>2015 UTC 18-02-16</td>
<td>2015 UTC 17-02-16</td>
<td>1.72</td>
</tr>
<tr>
<td>RN18</td>
<td>1800 UTC 18-02-16</td>
<td>1800 UTC 17-02-16</td>
<td>1.79</td>
</tr>
<tr>
<td>RN19</td>
<td>2005 UTC 18-02-16</td>
<td>2005 UTC 18-02-16</td>
<td>1.41</td>
</tr>
<tr>
<td>RN18</td>
<td>1800 UTC 18-02-16</td>
<td>1800 UTC 17-02-16</td>
<td>1.28</td>
</tr>
<tr>
<td>RN18</td>
<td>1800 UTC 18-02-16</td>
<td>1800 UTC 17-02-16</td>
<td>0.68</td>
</tr>
<tr>
<td>RN77</td>
<td>1800 UTC 22-02-16</td>
<td>1800 UTC 21-02-16</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Fig. 1: Time series of the correlation between the SRS and the observed concentrations at the Punggye-ri Nuclear Test Site.

Fig. 2: Spatial maps of the correlation between SRS and observed concentrations (top: for the control forecast; middle: ensemble median) and percentage of members having a correlation > 0.75 (bottom) at different times. DPRK-4 denotes the location of the Punggye-ri Nuclear Test Site where the test took place. RN38 and RN77 denote the location of the IMS stations where the radioxenon samples were taken.