AEMET-γ-SREPS: CONVECTION-PERMITTING EPS

A. CAILADO, J.A. GARCIA-MOYA, M. COMPTE, P. ESscrIBA and C. SANTOS

Spanish Meteorological Agency (AEMET) acalladop@aemet.es

EPISODE I

AEMET-γ-SREPS

MULTI-BPCS

ECMWF / EPS

NCEP / GFS

MF / ARPEGE

CMC / GEM

JMA / GEM

MULTI-NWP

HARMONE-ARGONE

HARMONE-AALRO

WRF / ARW

NMMB

CHARACTERISTICS

- 2.5 km 20-members convection-permitting LAM-EPS
- Multi-boundary conditions from 5 Global NWP models
- Multi-model with 4 non-hydrostatic NWP models

GOALS

Mesoscale forecasts but estimating uncertainties for:
- Heavy precipitation events
- Convection organization
- Geographic effects: e.g. enhancement of precipitation
- Local surface with social impact variables: T2m, RH2m, Winds, etc.

EPISODE II

TOWARDS MULTI-BOUNDARIES AND MULTI-NWP MODELS

MULTI-BOUNDARIES THE BEST

SLAF with ECMWF deterministic performs better than ECMWF-EPS as boundaries

Multi-boundaries perform better than SLAF with ECMWF-DET

Multi-boundaries performs better than SLAF with ECMWF-DET

MULTI-MODEL IS BETTER THAN MULTI-PHYSICS AND SPPT

Multi-model → HARMONE-ARGONE + WRF-ARW

Multi-physics → ARGONE and AALRO (HARMONE)

SPPT → Applied to HARMONE-ARGONE

EPISODE III

AEMET-γ-SREPS APRIL-2006

TOWARDS OPERATIONS

- Currently daily running at 00 and 12 UTC up to 36 hours, but without assimilation

- Subjective (plots) and objective verification of each member

- Monitoring through EcFlow

- Probabilistic verification

- Re-verify multi-boundaries with multi-model as the best choice

EPISODE IV

THE FUTURE

- Running every 6 hours up to 48-72 hours operationally

- Combining multi-model, SPPT and surface flows perturbations

- Assimilation with LERTF

- Verification with Spatial Methods

- Specific products development: aeronautics, solar and wind power, etc.