Airborne wind lidar campaigns for preparation of the Aeolus mission

Oliver Reitebuch

Fernando Chouza, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, Benjamin Witschas

Knowledge for Tomorrow

Institute of Atmospheric Physics, German Aerospace Center DLR, Oberpfaffenhofen, Germany

Outline

 Capabilities of airborne wind lidars

 Campaigns for Aeolus preparation

 Observations of wind and aerosol in the Tropics

What can be measured with airborne wind lidars?

	ADM airborne demonstrator	2-µm wind lidar
wavelength	355 nm (UV)	2.022 µm (IR)
backscatter	molecules, aerosol, clouds	aerosol, clouds
wind	line-of-sight LOS, 20°	LOS, hor. wind vector, vertical wind w
vert. res.	250 m – 2 km	100 m
temp. res.	14 s (+4 s)	1 s LOS 30-40 s vector
hor. res. @ 200 m/s	3.6 km	200 m LOS 6-8 km vector
precision	2 m/s (mol.) 1.5 m/s (aer.)	< 1 m/s vector < 0.3 m/s vertical
accuracy	0.5-1 m/s	< 0.1 m/s
Reitebuch et al. (2009), JAOT Reitebuch (2012): Wind Lidar, in Schumann U. (Ed.)		

Targeted wind lidar observations in 2003 and assimilation experiments at ECMWF

Lidar observations over North Atlantic show clear positive impact on ECMWF forecast skills for 2-4 days, despite increase of amount of total observations by only 0.005%

> Weissmann et al. (2005), **JAOT** Weissmann and Cardinali (2007), **QJRMS**

Airborne Wind Lidar Campaigns by DLR

Outline

 Capabilities of airborne wind lidars

 Campaigns for Aeolus preparation

 Observations of wind and aerosol in the Tropics

Joint ESA–NASA–DLR campaign for Aeolus in 2015

Performance of the airborne demonstrator for Aeolus

More than 100 recommendations for Aeolus space mission derived from pre-launch campaigns with airborne demonstrator

1.7 m/s std. and 0.5 m/s

for flight on May 25, 2015

systematic difference

11 12 13

coeff. r=0.92,

2um - LOS wind speed / m/s

wind speed

Textbook example of "Iceland" Low on 15 May 2015

Comparison Winds from ECMWF and Wind Lidar

NAWDEX North Atlantic Waveguide and Downstream Impact Experiment

NAWDEX Team and aircrafts Sept-Oct 2016

Warm Conveyor Belt WCB Flight on 23 September 2016

Outline

 Capabilities of airborne wind lidars

 Campaigns for Aeolus preparation

 Observations of wind and aerosol in the Tropics

African Monsoon June/July 2006

Bou Karam et al. (2008), **QJRMS** Drobinski et al. (2009), **JGR** Messager et al. (2010), **QJRMS**

Airborne and ground-based measurements during SALTRACE 2013 **DLR Falcon 20** PI: B. Weinzierl Doppler wind lidar @ 2µm **Dropsondes** In-situ aerosol characterization Caribbean West Africa 30°N Trade winds 20°N _atitude [deg] AEW AEJ 10°N ITCZ 0° **Barbados (main site)** Ground-based in-situ and multi-• 110 flight hours between wavelength lidar measurements 75°W 10 June – 15 July 2013 35°W 65°W 55°W 45°W Longitude [deg] **5 large dust outbreaks**

How do dust properties change during long-range transport and are processed in the Carribean?

Long range dust transport seen by MACC/CAMS model

Chouza, Reitebuch, Benedetti, Weinzierl (2016), **ACP**

Saharan Air Layer SAL and African Easterly Jet AEJ

MACC model validation – The African Easterly Jet

Good qualitative dust spatial distribution agreement

AEJ intenstiy is strongly underestimated by MACC

Land-sea breeze over Dakar is in good agreement

AEW trough position is well reproduced

Distance [km]

500

700

600

800

400

Aerosol and wind south/north of the ITCZ

MACC model validation – The ITCZ

Good qualitative dust spatial distribution agreement. ABL too low.

Overestimation of the dust above the SAL

AEJ and TEJ position is well reproduced, but the speed underestimated-

Good estimation of the trade winds

Lat [deg]

- Case studies show significant underestimation of jet winds (ET, AEJ) in models by up to 10 m/s
- Validation of Aeolus with airborne demonstrator and prelaunch campaigns is well prepared
- First wind lidar and aerosol observations in Tropics used for MACC/CAMS model evaluation

