Strateole 2
Long-duration stratospheric balloons providing wind information

A. Hertzog, R. Plougonven, A. Podglajen (LMD/CNRS)
Ph. Cocquerez, S. Venel (CNES)

albert.hertzog@lmd.polytechnique.fr
Long-duration balloons

- Made of plastic (instead of rubber for weather balloons)
- Once fully inflated (at float level), advected by the wind on constant-density surfaces at ~ 50-70 hPa (18.5 - 21 km)
- Balloons can typically fly for 2-3 months
- Data transmitted to the ground through satellite phone
- The flight duration is limited by:
 - Gas leak through the balloon envelope
 - End of energy onboard (but we use rechargeable batteries now!)
 - Dramatic events (mountain waves) that can make the balloon burst
 - Political/safety considerations
Pre-Concordiasi (2010)

- Preparation of Concordiasi (Antarctica)
- 3 flights, 3-month long
- 30-s meteorological observations
 - GPS: positions (1.5 m) and winds (from successive balloon positions, 0.1 m/s)
 - Pressure (0.1 hPa)
 - Temperature, (0.2 K)
- Comparisons w/ ECMWF operational analyses and NASA/MERRA reanalyses
- Balloon observations were not assimilated by NWP systems

Flight duration: 92 days

Launched on Feb 8, 2010
End on May 11, 2010
Dynamical context

Hovmöller diagram of ECMWF winds @ 57 hPa during the campaign: QBO shift, Kelvin and Rossby-gravity (Yanai) waves
Part of this difference is associated with unresolved small-/meso-scale motions in the analyses...

(Podglajen et al., 2014)
Part of this difference is associated with unresolved small-/meso-scale motions in the analyses...
Difference statistics

Zonal wind
- $U_{\text{mer}} - U_{\text{obs}} <\Delta U> = -0.2 \text{ m/s, } \sigma = 5.9 \text{ m/s}$
- $U_{\text{cc}} - U_{\text{obs}} <\Delta U> = -2.4 \text{ m/s, } \sigma = 4.8 \text{ m/s}$

Meridional wind
- $V_{\text{mer}} - V_{\text{obs}} <\Delta V> = -0.3 \text{ m/s, } \sigma = 4.4 \text{ m/s}$
- $V_{\text{cc}} - V_{\text{obs}} <\Delta V> = 0 \text{ m/s, } \sigma = 3.6 \text{ m/s}$
Comparisons with high-latitude observations

- **Temperature**
 - **ECMWF**
 - Bias: -0.42 K
 - σ: 1.24 K
 - **NN50**
 - Bias: 1.51 K
 - σ: 1.75 K

- **Zonal wind**
 - **ECMWF**
 - Bias: 0.14 m/s
 - σ: 2.43 m/s
 - **NN50**
 - Bias: -0.13 m/s
 - σ: 3.41 m/s

- **Meridional wind**
 - **ECMWF**
 - Bias: 0.01 m/s
 - σ: 2.38 m/s
 - **NN50**
 - Bias: -0.09 m/s
 - σ: 3.13 m/s

Pre-Concordiasi, 2010, tropics

Vorcore campaign, 2005, Antarctica (Boccara et al., 2005)
Wind timeseries

Zonal velocities

Date

MERRA
ECMWF
Balloon

(m/s)
Strateole 2 project

- Our next long-duration balloon project
- French-US initiative focused on the deep tropics

Schedule
- 5 flights late 2018
- 20 flights late 2020
- 20 flights late 2023

- Treated like a real space project at CNES
 - Entered phase C last spring
 - Active work currently done (instruments and flight systems)
 - Confident in the calendar
Strateole 2

Motivations

- Study of the equatorial UTLS or Tropical Tropopause Layer (TTL)
 - Transition region between the troposphere (rapid vertical transport, Hadley/Walker circulation, deep convection) and the stratosphere (slow vertical transport, Brewer-Dobson circulation, QBO)
 - Important role of meso-/small-scale processes that have implications at global-scale: convective systems, penetrative convection, waves, cirrus and dehydration
 - Entrance gate to the stratosphere for tropospheric species
 - Analyses are widely used to study transport in the TTL...
 - … but (upper-air) wind observations are quite scarce in the tropics
 - And tropical winds are not as simply tied to the mass field as in the extra-tropics

(Fueglistaler et al., 2009)
Few radiosoundings are assimilated by current NWP systems at low latitudes.
Void areas over the Indian/Eastern Pacific/Atlantic Oceans and Africa.
Strateole 2 Motivations

- Study of the equatorial UTLS or Tropical Tropopause Layer (TTL)
 - Transition region between the troposphere (rapid vertical transport, Hadley/Walker circulation, deep convection) and the stratosphere (slow vertical transport, Brewer-Dobson circulation, QBO)
 - Important role of meso-/small-scale processes that have implications at global-scale: convective systems, penetrative convection, waves, cirrus and dehydration
 - Entrance gate to the stratosphere for tropospheric species
 - Analyses are widely used to study transport in the TTL...
 - … but (upper-air) wind observations are quite scarce in the tropics
 - And tropical winds are not as simply tied to the mass field as in the extra-tropics

(Fueglistaler et al., 2009)
Long-duration balloon assets

- Provide a global picture of the equatorial belt
 - Flights above continents/oceans, convection/clear sky
- Observations are performed in the frame of reference that moves with the wind
 - Quasi-Lagrangian behavior
- 30-s resolution resolves the whole atmospheric wave spectrum → provide observational constraints to GCM parameterizations
Gravity waves

Concordiasi (2010)

19 balloons
Gravity waves
Concordias (2010)
Gravity waves
Concordiasi (2010)

Gravity-wave intermittency

Concordiasi absolute momentum fluxes ($\rho<u'||w'>$)

Occurrence frequency

Concordiasi

Pre-Concordiasi
Strateole 2 measurements

- Flight-level meteorological observations
 - P, T, winds @ 50 and 70 hPa
 - Will be disseminated on the GTS in near real time (through a collaboration with Meteo-France)
- Sounding capabilities
 - Profiles of T down to 2 km below the balloon, with a vertical resolution of ~ 1 m and a time resolution of ~ 10 min (LASP FLOATS instrument)
 - Nighttime profiles of water vapour and aerosols (LASP/NOAA Rachuts instrument)
 - 850-nm cloud lidar measurements (LATMOS BeCOOL instrument)
- Chemical species at flight-level
 - Water vapour, carbon dioxide, aerosols
Conclusions

- Previous observations performed on long-duration balloons have revealed large, long-lasting errors in the representation of the equatorial lower-stratosphere dynamics in current NWP products.

- Strateole 2 (2018-2023) is aimed at observing the equatorial UTLS with these balloons
 - possibly contributes to improving NWP analyses and forecasts (assimilation, parameterization)
 - contributes to ADM cal/val activities in a region where the impact of ADM observations to numerical forecasts is expected to be large (about 300 co-locations in 2018, 1 000 in 2020)
 - feedbacks on how to best implement the campaign most welcomed!

- Google Loon project could be another source of high-altitude winds in the tropics