AMVs in the Tropics: use in NWP, data quality and impact

James Cotton, Mary Forsythe, Francis Warrick (Met Office)
Kirsti Salonen, Niels Bormann, Katie Lean (ECMWF)

Joint ECMWF/ESA Workshop on ‘Tropical modeling, observations and data assimilation’, 7-10 November 2016
Contents

• AMV use at Met Office
• Data quality in the tropics
• Quality control and errors
• Coordinated impact study - tropics
• Recent data denial study
AMV coverage – from 2010 to 2016

Tropics – 5 Geo’s: Meteosat-7, Meteosat-10, GOES-13/15, Himawari-8
Others: Meteosat-8 (future IODC), INSAT-3D, FY-2E/G, COMS-1..
Data quality in the tropics
NWP SAF AMV monitoring provides a long-term archive of obs minus background (O-B) statistics and Analysis Reports; http://nwpsaf.eu/monitoring/amv/index.html

- Met Office and ECMWF backgrounds

General trend observed for mid level (400-700 hPa) and upper level (above 400 hPa) AMVs

- AMVs that are faster than the model (positive speed bias) in the tropics
- AMVs that are slower than the model (negative speed bias) in the extra-tropics

Positive bias in tropics
- Often more pronounced for WV channel winds
High Level O-B, Sept 2016

GOES-15
NESDIS

GOES-13
NESDIS

Meteosat-10
EUMETSAT

IR

Cloudy
WV

© Crown copyright Met Office
High Level O-B, Sept 2016

Meteosat-7
EUMETSAT

Himawari-8
JMA

MTSAT-2 (Sept 2015)
JMA

IR

Cloudy
WV
• Dual Metop - image pairs from consecutive Metop-A/B swaths, ~50 mins apart

• No WV/CO₂ for height assignment of semi-transparent clouds (limited use of IASI)

• Height bias vs. MSG

• Bias position moves with ITCZ
EUMETSAT (ITT) proposed study, tasks include

• Explore in more detail the potential scientific explanations of AMV speed biases in tropics (convection, diurnal cycle of tropospheric humidity, semi-transparent clouds, horizontal and vertical wind shears, gravity waves, ICTZ position...etc.).

• Investigate whether AMVs are really representative of local winds or linked to other atmospheric phenomena in tropics (growing of convective cells, gravity waves).

• Draw specific conclusions on AMVs extraction in tropical areas and general recommendations to improve the quality and the use of the AMV products in such region.
Negative speed bias in TEJ

- Negative speed bias for Met-7 and MSG in high-troposphere of the tropics between June-Sept
- Coincides with Tropical Easterly Jet
- Bias more prominent for MetO than ECMWF

e.g. August 2013
Negative speed bias in TEJ

UKMO – ECMWF Analyses

- Large model differences in equatorial E. Africa and W. Indian Ocean
- Mean Met Office analysis up to 10 m/s faster than ECMWF
- Negative AMV O-B likely has contribution from model error
AMVs are treated as wind observations at a single pressure level. Height assignment (HA) remains dominant source of error.

Errors in HA can be handled via:

- *a-priori* blacklisting of known problem areas with large systematic errors (Cotton and Forsythe, 2012)

- down-weighting observations through specification of situation-dependent observation errors (Forsythe and Saunders, 2008; Salonen and Bormann, 2013)

- bias correcting mean height errors - in regional models (Lean et al., 2015) and global models (Salonen and Bormann, 2016)

Met Office new QC – inversion height correction and ‘dry layer’ QC (Cotton et al., 2016)
AMVs in tropics can be screened prior to assimilation and/or have tighter quality indicator (QI) thresholds

e.g. ECMWF blacklisting

• Meteosat-10 IR and WV winds below 250 hPa in the tropics (25N-25S)
• Himawari-8 IR winds below 300 hPa in the tropics (25N-25S)
• Dual Metop-A/B winds equatorwards of ± 40°

Attempts to relax blacklisting in tropics for MSG led to degraded forecast scores (Salonen and Bormann, 2016)

Normalised difference in wind forecast RMS error for day 2 and 3
A good specification of the observation error is essential to assimilate in a near-optimal way.

Two independent sources

Error in vector
- Linked to accuracy of tracking step

Error in height
- Linked to accuracy of height assignment
- More problematic if large vertical wind shear

\[
\text{Total } u/v \text{ error} = \sqrt{(u/v \text{ Error}^2 + \text{Error in } u/v \text{ due to error in height}^2)}
\]

For this we need an estimate of:
1. \(u\) and \(v\) error (Eu and Ev)
2. Height error (Ep)

Until then estimate Ep using best-fit pressure stats as a guide.
See Forsythe & Saunders, IWW9, 2008; Salonen et al, 2014, JAMC

Currently assume uncorrelated errors
Estimating Systematic Height Errors
Kirsti Salonen, Niels Bormann (ECMWF)

- AMV height error estimates similar for both methods
- Can be used to re-assign to more representative level
- Preliminary DA experiments show encouraging results for impact on forecast scores
- Mixed results for O-B fit (AMV fit slightly degraded, other winds improved)

AMV height higher than level of best-fit

GOES-15 IR
Dry Layer QC
MSG IR10.8 AMVs at 12:30 UTC, 3 Nov 2014

AMV Speed

QI2 > 80

AMV assigned in dry slot between 2 moist layers. Large speed bias

P=423 hPa, V=47 m/s, O-B=+25 m/s, BgRH=26%
Inversion Correction
MSG IR10.8 AMVs at 12:30 UTC, 3 Nov 2014

AMV Speed

QI2 > 80

P=762 hPa, V=18 m/s, O-B=-9 m/s, BgRH=21%

Assigned ½ way up from inversion base. Same speed, large bias, bg RH 21%.
Many AMV producers moving to use of pixel-based cloud schemes developed by the cloud community, in some cases providing additional information.

Cloud optical depth ✔
Median pressure error ✔
Scene cloud type
OE cost?

- Help understand AMV errors
- Potential to filter out poor data
- Feed estimated height error into observation error scheme
- Potential also for height reassignment or layer representation
Collaborative AMV Impact Study (2012)
Coordinated Study of AMV impact in NWP

James Cotton(1), Christophe Payan(2), Richard Marriott(1), Nathalie Saint-Raymond(2), Niels Bormann(3), Kirsti Salonen(3), Koji Yamashita(4), Nacy L. Baker(5), Pat Pauley(5), Rolf Langland(5), Liang Xu(5), Ron Gelaro(6), Dagmar Merkova(7), Alexander Cress(8), Yoonjae Kim(9), Eunhee Lee(9), Eunha Sohn(9), Chu-Yong Chung(9)

(1) UMKO, (2) Meteo France, (3) ECMWF, (4) JMA, (5) NRL, (6) GMAO, (7) Tellus Applied Science, (8) DWD, (9) KMA

11th International Winds Workshop, Auckland, New Zealand, 20-24 February 2012
Coordinated study of NWP winds impact

Study Details

Expand on an earlier preliminary study from 2008/09 by selecting two longer trial seasons (6 weeks) and coordinating a more consistent approach to producing verification results.

Period 1: 15 Aug – 30 Sep 2010, captures all major Atlantic hurricanes

Period 2: 1 Dec 2010 – 15 Jan 2011, NH winter period

Test options:
1. AMV denial (Periods 1 and 2)
2. Scatterometer denial (Period 1)
3. Polar AMV denial (Period 2)
4. Sensitivity study (Period 1)

<table>
<thead>
<tr>
<th></th>
<th>No AMV</th>
<th>No Scat</th>
<th>No Polar</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWD</td>
<td>✓✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ECMWF</td>
<td>✓✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GMAO</td>
<td>✓✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>JMA</td>
<td>✓✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>KMA</td>
<td>✓✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>✓✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NRL</td>
<td>✓✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>UKMO</td>
<td>✓✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Results from 8 NWP centres

Here we focus on AMV results
Coordinated study of AMV impact

A few highlights

Impact on mean wind analysis at 200/250 hPa

- Concentrated in tropics, particularly (i) Eastern Pacific and (ii) Indian Ocean
- Impact not consistent between centres e.g.

 During Period 1 there is a predominantly Easterly mean flow in the tropics.
 The inclusion of the AMVs tends to enhance the strength of the easterly flow at DWD, JMA and NRL, but reduce it at ECMWF and MF

Denial – Control: green/blue represent where the analysis is faster as a result of assimilating AMVs
Coordinated study of AMV impact

A few highlights

Can we explain the different impacts in tropics?

• Compare JMA and ECMWF wind analyses with and without AMVs

• Overall differences between ECMWF and JMA are significantly smaller in the experiments with AMVs than in the denial experiments

• The differences seen in the AMV denials are likely due to differences in the climatology of the forecast models of the centres

• AMVs act to bring the two systems in better agreement

Niels Bormann, Koji Yamashita
Coordinated study of AMV impact

A few highlights

Impact on 500 hPa Geopotential Height T+48 forecast error (RMS)

• Overall impact rather positive
• Most widespread reductions in RMS found in the extra-topics and polar-regions in particular
• Several centres (ECMWF, MF, DWD, JMA, UKMO) in period 1 show a largely positive impact on Z500 in region of North Atlantic storm tracks e.g.

Blue/purple colours represent where the forecast RMS in the reference experiment (containing the AMVs) is smaller than in the denial experiment i.e. positive impact
Recent Met Office Denial Study
Observing System Experiments (OSEs)

- A coordinated set of OSE’s designed to give us a snapshot of impacts from PS37 observations and to analyse the consistency with Forecast Sensitivity to Observations Impacts (FSOI).

The following set of data denial experiments have been run:

<table>
<thead>
<tr>
<th>Exp</th>
<th>Data Denied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt 1</td>
<td>No IR data (no IASI, CrIS, AIRS, HIRS or SEVIRI)</td>
</tr>
<tr>
<td>Expt 2</td>
<td>No MW data (no AMSU/MHS, ATMS, SSMIS, AMSR-2, Saphir, FY-3C)</td>
</tr>
<tr>
<td>Expt 3</td>
<td>No MW Humidity (no MHS, ATMS18-22, FY-3C, Saphir, SSMIS 9-11 & 12-16, AMSR-2)</td>
</tr>
<tr>
<td>Expt 4</td>
<td>No MW Imagers (no AMSR-2, SSMIS 12-16)</td>
</tr>
<tr>
<td>Expt 5</td>
<td>No Adv IR sounder humidity channels (AIRS, CrIS and IASI) and no HIRS 11,12</td>
</tr>
<tr>
<td>Expt 6</td>
<td>No AMVs</td>
</tr>
<tr>
<td>Expt 7</td>
<td>No GNSSRO</td>
</tr>
<tr>
<td>Expt 8</td>
<td>No Scat</td>
</tr>
<tr>
<td>Expt 9</td>
<td>No TEMPs</td>
</tr>
<tr>
<td>Expt 10</td>
<td>No Ground based GNSS</td>
</tr>
</tbody>
</table>

Baseline is a PS37 N320 control from 12 Nov - 15 Jan 2015/16
Impact Scorecards – Fc RMS Error

Vs Observations

Vs ECMWF Analysis

No AMV

No Scat

Upper level winds in tropics

Low level winds in tropics

© Crown copyright Met Office
Summary

• NWP needs wind data to represent the divergent comp. of the flow properly
 • particularly important in the tropics and for smaller scales..
 • but not likely to be captured with current spatial thinning of ~200-km

• Dependant on work in cloud community to improve CTH information

• Work to address AMV errors (HA) is ongoing, but more to understand – are tropical AMVs representative of local winds? (EUM ITT)

• AMV data have tended to have a positive speed bias in tropics

• AMVs have strong impact on the tropical mean wind analysis in the upper troposphere and reduce bias between models

• Beneficial impact on forecast RMS errors, particularly for short-range wind forecasts in the tropics

• Future AMV products will include additional quality information from the derivation
Thank you for listening

Questions?
References

- Salonen, K., Bormann, N., 2013. Winds of change in the use of Atmospheric Motion Vectors in the ECMWF system. ECMWF Newsletter 136, 23–27.

- Cotton, J., Forsythe, M., Warrick, F. (2016). Towards improved height assignment and quality control of AMVs in Met Office NWP. Proceedings for the 13th International Winds Workshop, Monterey, California, USA

NWP quality control for AMVs

Met-9 NH IR winds, above 400 hPa, August 2014

All received (2,291,797)
stdv = 6.5 m/s

QI1>80 (1,257,157)
stdv = 4.9 m/s

Used (161,247)
stdv = 4.2 m/s

100%
55%
7%

Assimilate only a small percentage of the data
Dual Metop-A/B IR
(Warrick, 2016)

AVHRR viewing geometry playing a role?

SZA (image 2)

O-B

• In ITCZ, bias shows strong dependence on satellite zenith angle (SZA)

AMV quality worse when HA done from low SZA?

Figure 18: Properties of Dual-Metop AMVs from 0900 to 1500 UTC, 15/3/16.
 Observation errors

Old Errors

Vary only with pressure (2.8-6.6 m/s), based on O-B statistics (but inflated)

New Errors

Benefit seen in assimilation experiments at the Met Office and ECMWF

© Crown copyright Met Office
Dry Layer QC

Jan 2015: QI2 > 80

QI2 > 80 + Dry Layer Flag

MSG IR10.8 below 700 hPa

MTSAT-2 IR above 400 hPa
Why an Inversion Correction?

From IWW3 Schmetz et al. (1996)

- Important that low level winds are assigned within boundary layer as directional variations can increase rapidly above the capping inversion.

- (Low) clouds travel with wind at cloud-base which is usually within atmospheric boundary layer (ABL)

Most GEO AMVs already account for inversion situations, but there remain potential benefits to doing within NWP

- Full vertical model resolution (more levels within ABL to resolve inversion)

- Highest temporal resolution and update frequency (e.g. 3-hrly x4/day, rather than 6-hrly x2/day)

- Consistent with model characteristics

Some Conclusions

• Nearly all centres showed a strong impact from AMVs on the tropical mean wind analysis in the upper troposphere.

• Differences in the tropical wind fields are considerably smaller when AMVs are assimilated compared to the AMV denial case.

• The AMVs act to bring the two systems in closer agreement and would suggest that the AMVs provide an accurate source of wind information in these areas.

• Largest impact on short-range wind forecasts (out to T+24) is also seen in the tropics at high level (fit to radiosonde winds).

• Larger impact often seen for centres who use 3DVAR or fewer other observations.

• No geographical regions where the AMVs are performing consistently poorly among several centres. Suggests regions of negative impact are mainly system-dependent (QC, thinning, assimilation scheme, forecast model, etc), rather than AMV-dependent.
Coordinated study of AMV impact

A few highlights

Forecast sensitivity to Observations (FSO)

- Adjoint-based FSO method gives estimate of the contribution of each observation towards reducing the 24-hour forecast error
- Top level results agree fairly well for ECMWF, Met Office, MF – AMV FSO of 7-11%
- Markedly different for NRL – AMV FSO of 23%. Due to differences in AMV assimilation (e.g. superobs) or is the NAVDAS system able to extract wind information more effectively than temperature information?
Coordinated study of AMV impact

A few highlights

Total AMV FSO by satellite/channel combination

- All combinations contribute positively
- Total impacts closely related to the number of observation assimilated
- Difference in impact from geostationary WV winds: largest contributions for ECMWF, smallest for NRL

 reduction in forecast error
Coordinated study of AMV impact

A few highlights

Mean FSO per observation

- Met Office shows more uniform impact per observation
- For ECMWF the largest contribution per observation comes from the geostationary cloudy WV winds, smallest tends to be from visible
- Opposite tends to be true for NRL - largest impact per geostationary superob is from the visible winds and the smallest from the WV
- Polar wind differences: Met Office shows strong impact, small impact for ECMWF
Coordinated study of AMV impact

Conclusions

• Probably for the first time have been able to demonstrate a consistent level of positive forecast impact from AMVs across all NWP centres – especially in high level extra tropics

• Nearly all centres see a strong impact on the tropical mean wind analysis

• Larger impact often seen for centres who use 3DVAR or fewer other observations, and for NRL whose FSO statistics suggest quite a different impact from the various components of the observing system

• No geographical regions where the AMVs are performing consistently poorly among several centres. Suggests regions of negative impact are mainly system-dependent (QC, thinning, assimilation scheme, forecast model, etc), rather than AMV-dependent

• In addition to the classic denial study, the FSO stats further indicate significant relative importance of the AMVs in the global observing system context
Impact Scorecards
Versus Own Analysis

No IR
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No MW
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No AMV
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No Scat
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No GNSSRO
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No Sonde
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)
Impact Scorecards
Versus ECMWF Analysis

No IR
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No MW
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No AMV
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No Scat
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No GNSSRO
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)

No Sonde
PERCENTAGE CHANGE IN RMSE
max = 5 (grey = 2)
OSE Impact Summary

- All data denial experiments behave as expected
- Complimentarity
 - Radiances impact H500, PMSL
 - AMV/Scat winds impact winds (and H500)
 - Sonde main impact northern hemisphere
 - Radiances large impact in southern hemisphere
- Discrepancy
 - Scatwinds W850 in tropics, show opposite impact verifying against own analysis (-ive) vs. ECMWF analysis (+ive)

- Improved analysis of water vapour to make optimal use of temperature sounding channels