

Improving the SPPT Scheme using High-Resolution Model Simulations

Hannah Christensen¹,

Sarah-Jane Lock², Andrew Dawson¹, Tim Palmer¹

h.m.christensen@atm.ox.ac.uk

1. Atmospheric, Oceanic and Planetary Physics, Univ. Oxford

2. European Centre for Medium Range Weather Forecasts

ECMWF/WWRP Workshop on Model Uncertainty, 13th April 2016

Predictability of Weather and Climate at Oxford

- Development and analysis of stochastic parametrisation schemes in Earth-System models
- Inexact hardware in numerical weather and climate models
 - Double precision as a default is overcautious whether models are stochastic or deterministic
 - Reducing precision for the small scales can lead to significant energy savings

IFS in Single Precision

• Ensemble forecasts at T 399 are almost identical, but with 40% speed up

Düben et al, MWR 2015. Vana et al, submitted to GRL

A Scale Selective Approach

- Small scale dynamics are inherently uncertain due to parametrisation schemes, viscosity, missing data, initialisation, ...
- We can push the small scales harder than the large scales
- The smallest scales are the most expensive ones
- Our vision: a global circulation model which uses just the right level of precision, reducing numerical precision with scales
- e.g. possible approach: a spectral model using single precision for wavenumbers 0-500, and half precision for wavenumbers 500-2000

A Scale Selective Approach

- Small scale dynamics are inherently uncertain due to parametrisation schemes, viscosity, missing data, initialisation, ...
- We can push the small scales harder than the large scales
- The smallest scales are the most expensive ones
- Our vision: a global circulation model which uses just the right level of precision, reducing numerical precision with scales
- e.g. possible approach: a spectral model using single precision for wavenumbers 0-500, and half precision for wavenumbers 500-2000

Please see Peter Düben's poster for more details!

Improving the SPPT Scheme using High-Resolution Model Simulations

SPPT is one of the most widely used stochastic parametrisation schemes

- SPPT: 'Stochastically Perturbed Parametrisation Tendencies'
- Holistic approach for representing uncertainty in all sub-grid physics parametrisations
- SPPT scheme used in weather, seasonal and climate models

Implemented/tested in:

- UK Met Office
- ECMWF IFS (med. range & System 4)
- Japan Meteorological Agency
- AROME

- COSMO
- WRF
- CESM
- EC-Earth

1 -0.8

0.6

0.4

0.2

Shutts et al, 2011

Improving the SPPT scheme using high-resolution simulations

Beneficial impact on reliability of forecasts, mean square error, and climatology of model

CTRL – OBS **Reducing OLR bias in System** 4 seasonal forecasts Reliability of T850 in IFS

Weisheimer et al, 2014, Phil Trans

Medium-range forecasts Ψ T850, tropics 1.8 1.6 -Ensemble spread and r.m.s. error of ensemble mean (K) **RMSE** 1.4 -1.2 -

Ensemble

spread

Improving ENSO variability in CCSM4 Ψ

Christensen, Berner, Coleman and Palmer, submitted to J. Climate, 2016

Improving ENSO variability in CCSM4

- Because of multiplicative nature of SPPT
 - Additive noise scheme (SKEB) does not have the same impact
- Tested additive and multiplicative noise in simple 'Delayed Oscillator' model of ENSO
 - Equivalent result as in CCSM4
 - additive noise amplified ENSO whereas multiplicative noise reduced the amplitude

Christensen, Berner, Coleman and Palmer, submitted to J. Climate, 2016

Improving the SPPT scheme using high-resolution simulations

Hannah Christensen

SPPT: Stochastically Perturbed Parametrisation Tendencies

SPPT

	6
T = D + (1 + a)	∇D
I = D + (I + e)	\sum_{i}
	$\overline{i=1}$

- T Total tendency
- **D** Dynamics tendency
- P Parametrisation tendency

N- 66636 min2.3	1.918 mas- 1.918 m	ean- 0.000 ma-	- 0.426 sig-	0.498
-1.5 -1.5 -1.1 -0.9 -	-0.7 -0.5 -0.3 -0.1	81 03 05	0.7 0.9 1.1	13 15
	d	S.S.		
	E	an Port	- Contraction	2
	-	made	10	
6.			N	2
		1	~/	
	*			
			1	1
1				

Palmer et al, 2009. ECMWF Tech Memo 598

All IFS physics schemes are perturbed using same pattern:

- 1. Radiation
- 2. Turbulence & Gravity Wave Drag
- 3. Convection
- 4. Cloud
- 5. Non-Orographic Grav. Wave Drag
- 6. Methane Oxidation

Four variables perturbed: T, U, V, q

Perturbation constant vertically, tapered in BL and stratosphere

Testing "Independent SPPT" in IFS

SPPT
$$T = D + (1 + e) \sum_{i=1}^{6} P_i$$

SPPT $T = D + \sum_{i=1}^{6} (1 + e_i) P_i$

- T Total tendency
- **D** Dynamics tendency
- P Parametrisation tendency

- Perturb IFS physics schemes with independent random fields
 - Assumes errors from different schemes are uncorrelated
 - Set noise magnitude and correlations separately for each scheme
 - Able to only taper certain schemes if desired
 - Start with same σ , ϕ as operational SPPT

Testing "Independent SPPT" in IFS

- Series of experiments
 - CY41R1 at $T_{L}255$ (12 start dates)
 - CY42R1 at T_{co} 255 (48 start dates)
- 21 ensemble members
- Antje Weisheimer's global moisture fix on

- 1. Radiation
- 2. Turbulence & Grav. Wave Drag
- 3. Convection
- 4. Cloud
- 5. Non-Orog Grav. Wave Drag
- 6. Methane Oxidation

- Standard SPPT:
- Independent SPPT:
- Partially independent SPPT:

iSPPT: significant improvement in the Tropics

Impact is in regions with significant convection

iSPPT: only small degradation in S. Extra Tropics

iSPPT seems a promising approach

- **BUT** can we improve SPPT more systematically?
- Can we justify SPPT? Can we explain why it does such a good job?
- Can we identify where it doesn't do a good job and why?
- SPPT scheme includes several assumptions
 - Multiplicative noise
 - All schemes treated the same: uncertainty in tendency proportional to total tendency (cf. iSPPT: errors from schemes uncorrelated)
 - Specifies standard deviations, temporal and spatial correlations with no physical reason for choices
- Q: Can we constrain some of the characteristics of the stochastic term using high-resolution model output?
 - Following in the footsteps of Shutts and Palmer 2007 (J. Clim.), Shutts and Callado Pallares 2014 (Phil Trans R. Soc. A) ...

Use the CASCADE dataset as 'truth' Compare IFS SCM to this truth

thanks to Chris Holloway, U. Reading

TRMM

CASCADE 4km 3DSmag OLR

Coarse graining experiments

1. Coarse grain CASCADE to model grid to provide ICs and forcing data for IFS SCM at T639 = 30km

3. Compare SCM to CASCADE at later time

Analysing the data: multiplicative noise?

SPPT:

$$T = D + (1 + e) \sum_{i=1}^{5} P_i$$

Calculate 'true' total tendency from CASCADE

Assume SCM dynamics tendency is 'correct'

Consider error in SCM physics tendencies

$$T - D = (1 + e) \sum_{i=1}^{5} P_i$$

Compare 'true'
physics tendency ... to parametrise

... to parametrised physics tendency

Consider T tendency at 850hPa

Analysing the data: characteristics of *e*

SPPT:

$$T = D + (1 + e) \sum_{i=1}^{5} P_i$$

Calculate 'true' total tendency from CASCADE

Assume SCM dynamics tendency is 'correct'

Consider error in SCM physics tendencies

SOLVE

Do not use data from BL or stratosphere (tapered)

$$T - D - \sum_{i=1}^{5} P_i = e \sum_{i=1}^{5} P_i$$

$$\begin{bmatrix} \mathsf{T} & & \\ \mathsf{q} & & \\ \mathsf{U} & & \\ \mathsf{v} & & \\ \mathsf{v} & \end{bmatrix}$$

i.e. Following the assumptions of SPPT, can we measure the statistical characteristics of the perturbation *e*

e.g. e for a single time step

$$T - D - \sum_{i=1}^{5} P_i = e \sum_{i=1}^{5} P_i$$

Calculate *e* as a function of position for a single time step

Hannah Christensen

Improving the SPPT scheme using high-resolution simulations

Conclusions

- SPPT is a skilful approach for representing uncertainty in weather and climate models
- iSPPT improves tropical reliability of SPPT in medium range
 - Two pattern iSPPT appears particularly skilful in tropics and extra tropics
- Use coarse-graining to measure error characteristics of different schemes
 - Multiplicative noise appears a reasonable model for uncertainty in tendencies
 - BUT different error characteristics for different schemes motivates treating the parametrisation schemes separately
 - If convection is not triggered, the error characteristics of the other schemes change

These are early results! Future work: refine techniques used to calculate error, calculate statistical properties of error term

Thanks for listening!

CASCADE: model set up

- UK Met Office atmospheric model setup
- Semi-Lagrangian, non-hydrostatic dynamics
- Cloud-system resolving (4 km, 70 levels) one-way nested grid
- Large tropical domain (15,500 km x 4,500 km)
- Prescribed constant SST and updated lateral boundary conditions from ECMWF 25 km forecast analyses for the Year of Tropical Convection (YOTC)
- 3D Smagorinsky mixing
- Convection scheme switched on but closure such that convection scheme is only active in low CAPE environments (tends to produce shallow/congestus)

Some technical details

- Coarsen using a simple 'top hat' function
- Spatially average first, before interpolating from CASCADE to SCM levels
- CASCADE data only every 1hr, so linearly interpolating between
- SCM has higher top than CASCADE data: fill in using ERA reanalysis
- Use standard IFS boundary files (orography, land cover etc)
- Automate running 75,000 SCMs per time step

Calculate *e* separately for different variables

Coarse graining experiments

- Performed by Alfons Callado Pallares and Glenn Shutts
 - Define tendencies from IFS @ T1279 (16km) to be "truth"
 - Compare to tendencies from forecast: IFS @ T159 (130km)
 - Use 24 x 12-hour forecasts from identical initial conditions
 - Coarse grain both resolutions in time (12hr triangular filter) and space (to 500km grid)
 - Calculate mean and standard deviation of T1279 tendencies conditioned on the T159 tendencies

Coarse graining experiments

fig from A. Callado-Pallares and G. Shutts

iSPPT: significant improvement in the Tropics

T850 CRPS

T850 RMSE in ensemble mean

T850 RMS ensemble spread

-0.03[⊥]0

3

6

fc-step (d)

9

15

15

12

T_{co}255

Inexact hardware in numerical weather and climate models

P. Dueben

- Double precision as a default is overcautious whether models are stochastic or deterministic
- Reducing precision for the small scales can lead to significant energy savings

Model Run	Normalized	Normalized
	Energy	operations per
	Demand	virtual Joule
235 km, 64 bits	1	1.00
260 km, 64 bits	0.82	1.01
315 km, 64 bits	0.47	1.02
235 km, 24 bits	0.35	2.83
235 km, 22 bits	0.32	3.09
235 km, 20 bits	0.29	3.41

22 bits = 1 sign, 11 exponent, 10 significand 20 bits = 1 sign, 11 exponent, 8 significand