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Severe convection with the right combination of: 

• Moisture

• Instability

• A lift mechanism

• Sufficient shear

Key forecast challenges to address:

What is the probability that convection will occur at a 

given location?

How intense might convection be?

What convective modes are favored (primary hazards)?

Core motivation: hazardous weather prediction



Ensemble forecast system framework

Forecast system design components:

• Ensemble – want probabilistic, not deterministic predictions

• High-resolution for convective mode and intensity (convection-

allowing (CAM) horizontal grid spacing)

• Computational constraint - regional model (e.g., WRF)

• Ensemble data assimilation for initial conditions (e.g., DART)

Regional ensemble forecast system components:

• Initial condition uncertainty (e.g., ensemble DA)

• Surface and lateral boundary condition uncertainty

• Model error representation – CAMs are notoriously under 

dispersive!



1581 X 986
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Example: NCAR Real-time ensemble
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Lower boundary: free forecast land surface, fixed sea state

ensemble.ucar.edu

15 km grid spacing

3 km grid spacing



NCAR ensemble – hazard prediction sample

Day 1 probability of UH > 75 m2/s2 w/ NWS warnings

I ni t :   2016- 03- 13 00 UTC	

Val i d:  2016- 03- 13 12 UTC – 2016- 03- 14 12 UTC	

Probability of simulated supercell thunderstorms (fill) overlain with 
issued severe weather warnings during the valid prediction period  

See Sobash et al. (2016) for more on this effort



NCAR ensemble – skill/reliability for precipitation

Schwartz et al. (2015) 

Skillful across range of
rainfall intensity, more
skillful with larger 
neighborhood for verification

Modest bias at all intensities

Underdispersive*, less so
For larger neighborhoods

* IC/BC perturbations only
* No obs error assumption

Model error treatment?



Model error representation in CAM ensembles

None

Rely on lateral boundary perturbations and initial condition diversity

Multi-model/multi-physics/multi-parameter

• Uncertain representations of physical processes

• Model dynamics/assumptions drive model climate

• Ensemble members may have varying skill and biases

• May be challenging to post-process (e.g. grids, variables, state size)

Stochastic methods

• Random model error process (ideally)

• Single model and physics climate

• Options available in WRF-ARW:

1) Stochastic Kinetic Energy Backscatter Scheme (SKEBS)

2) Stochastically Perturbed Parameterization Tendencies (SPPT)



Ensemble reliability – precipitation

Fhr 0-12 Fhr 18-36

Attributes diagrams @ 1 mm h-1 threshold

Overconfident predictions of precipitation (no observation error)

Stochastic methods can improve reliability in longer range storm-scale 

forecasts, but little impact on short-range  (< 12 h) prediction 



Forecast bias and spread time series - temperature

Bias drift relative to Control forecast
SPPT – largest bias drift, but also largest spread

BIAS SPRD
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Forecast verification against rawinsondes
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forecasts
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SPPTSKEBS
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Practical reliability for precipitation forecasts



Observed state

Control ensemble

Control ensemble:

Estimates true evolution of the atmosphere 

Lacks sufficient dispersion to capture the observed evolution after short integration

Select options:

Multi-XXX, calibration, perturbed boundaries, stochastic methods 

Cartoon of NCAR ensemble perturbation methods



Observed state

Control ensemble

PLBC ensemble

For the NCAR ensemble, perturbing the lateral boundary condition improves 

spread somewhat, but late in the forecast. Ensemble mean is about the same.

Note forecast area is far removed from true lateral boundaries. 

Cartoon of NCAR ensemble perturbation methods



Observed state

Control ensemble

PLBC ensemble

SKEBS ensemble

SKEBS leads to greater dispersion, beginning earlier in the forecast, with nearly

the same ensemble mean as the control and perturbed boundary ensemble.

Cartoon of NCAR ensemble perturbation methods



Observed state

Control ensemble

PLBC ensemble

SKEBS ensemble

SPPT ensemble

SPPT leads to even greater dispersion, beginning much earlier in the forecast, 

but the ensemble mean is further from the observed state relative to the control.

SPPT here requires calibration/tuning. Downside – some wild forecasts!

Cartoon of NCAR ensemble perturbation methods



Observed state

Improved model 
ensemble

Reduce dependence on spread to compensate for a poor model trajectory, try

to improve the forecast model to evolve more like the real atmosphere.

Then – find structural error growth deficiencies that require model error 

approaches to correct. 

If only we could just IMPROVE the model!



Continuous cycling is 

‘best practice’

First guess (B)

for analysis is short

forecast from prior

analysis

Minimal ‘spinup’ needed,

near the model attractor

For regional models – nearly all centers use ‘partial’ cycling – periodically

replacing the background from another (often global) analysis, adjustment

to regional model climate can take days

Bad forecast model = degraded background for the analysis and forecasts 

Analysis

Short forecast

Observations

B

Model error diagnostics in continuously cycled analysis



Identify model errors through continuous cycled DA – compare analyses 

against observations or other (trusted) analyses (GFS above).

700 hPa 1-month average temperature bias

Continuous cycled DA – model error revealed

Torn and Davis (2012) 

~ 700 hPa 35-day average temperature bias

Romine et al. (2013) 



Observation space verification

3-km ensemble forecast verification against rawinsondes

40 forecasts (late April to early June)

Initial down-scaling, diurnal bias in mid- and lower-troposphere, drift near tropopause

00 UTC verif

12 UTC verif

Drift

RMSE BIAS

downscaling



Spread-Error ratio during forecast

Temperature Specific 
Humidity

Zonal wind 
component

Meridional
component



Real-time analysis mean innovations

MYJ PBL scheme for analysis system

Classic cool and wet bias, but not everywhere

Lowest model level temperature Lowest model level water vapor

August 2015 mean analysis innovations for 00 UTC



Real-time analysis mean innovations

Lowest model level temperature Lowest model level water vapor

MYJ PBL scheme for analysis system

Slight warm bias in December but regional variability

December 2015 mean analysis innovations for 00 UTC



PBL physics – Surface T mean innovations – May 2015

MYJ MYNN

ACM2 YSU

Systematic errors in surface temperature are only weakly 
dependent on PBL physics. Need to test surface physics.



WRF model challenges – surface moisture



Latent 
Heat Flux

Sensible
Heat Flux

2M Water
Vapor

WRF model challenges – surface moisture

Spike in surface moisture owes to 
decoupling PBL while latent heat 
flux is still positive

Most prominent in heavily vegetated 
areas with calm winds



Physics errors from downscaling

Schwartz et al. (2015)

Ensemble ‘warm start’ 15-> 3 km
GFS ‘cold start’ 0.5 -> 3km

Difference in 12Z vs. 00Z GFS initialized
forecast time series (avg over 30 days)



1581 X 986

415 X 325 X 40

Analysis domain

(50 members)

Future: High resolution ensemble analysis

15 km grid spacing

3 km grid spacing

Avoid errors from downscaling, leverage convective scale observations,
improve model climate (?). Eventually, global ensemble. 



Analysis cycle (i)

Model advance (t)

Adapted from Cavallo et al. (2016)
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Physics tendencies for further improvement

Demonstrated by S. Cavallo yesterday…



Storm-scale ensemble design remains largely ad hoc:

- Stochastic methods to improve reliability

- Lots of opportunity to improve models at high-resolution 

prediction

- DA for high-resolution grids is still immature

Stochastic schemes are found to: 

- improve ensemble dispersion characteristics

- introduce bias that may require additional spread 

- difficult to verify adequate ensemble spread

- Effort is need to better target when and where 

additional spread is needed

Summary – high resolution ensembles



1) Continuously cycled DA (ongoing)

- Improve model climate toward obs/trusted analysis

2) Careful analysis/verification of forecasts (ongoing)

- Many examples the last few days, a few here as well

3) High resolution analysis grid (planned)

- Minimize physics and downscaling spinup errors

- Convective scale obs for analysis and verification

4) Physics tendency methods (planned)

- e.g., Rodwell, Cavallo talks

- Identify and correct error sources

Improving/diagnosing model climatology


