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Four-dimensional variational assimilation (4D-Var)

The 4D-Var data assimilation problem can be expressed as the
minimization of

J [x0] =
1

2
(x0−xb)TB−1(x0−xb)+

1

2

N
∑

i=0

(Hi [xi ]−yi )
TR−1

i (Hi [xi ]−yi )

subject to the dynamical system

xi+1 = Mi (xi )

where

xb A priori (background) estimate
yi Observation
B Background error covariance matrix
Ri Observation error covariance matrix
Hi Observation operator
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Weak-constraint 4D-Var

We consider the model as a weak constraint

xi+1 = Mi (xi ) + ηi , ηi ∼ N (0,Qi )
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Weak-constraint 4D-Var

We consider the model as a weak constraint

xi+1 = Mi (xi ) + ηi , ηi ∼ N (0,Qi )

State formulation

J (x0, x1, . . . , xN)

= Jb + Jo +
1

2

N−1
∑

i=0

(xi+1 −Mi (xi ))
TQ−1

i (xi+1 −Mi (xi ))
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Weak-constraint 4D-Var

We consider the model as a weak constraint

xi+1 = Mi (xi ) + ηi , ηi ∼ N (0,Qi )

State formulation

J (x0, x1, . . . , xN)

= Jb + Jo +
1

2

N−1
∑

i=0

(xi+1 −Mi (xi ))
TQ−1

i (xi+1 −Mi (xi ))

Error formulation

J (x0, η0, . . . , ηN−1) = Jb + Jo +
1

2

N−1
∑

i=0

ηTi Q
−1
i ηi
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Condition number

The inner loop is solved using a gradient minimization method.
The expected accuracy of the numerical solution and the speed of
convergence are both determined by the condition number of the
Hessian.
Condition number

κ(A) = ||A||||A−1||

In the matrix 2-norm, for a symm. pos. def. matrix A, we have

κ(A) = λmax(A)/λmin(A)

In 4D-Var the condition number of the Hessian matrix determines
convergence properties.
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Notation

Define

D = diag{B ,Q1, . . . ,Qn}

R = diag{R1, . . . ,Rn}

H = diag{H1, . . . ,Hn}

L =











I 0 0 · · · 0
−M1 I 0 · · · 0
...

...
...

...
...

0 0 · · · 0−Mn I










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Hessian - Error formulation

Sp = D−1 + L−THTR−1HL−1

Sp =





B−1
0

Q−1
1 .

.
Q−1

n



+













HT
0 (H1M1)

T (H2M2M1)
T

... (HnMn...M1)
T

HT
1 (H2M2)

T
... (HnMn...M2)

T

HT
2

. . .
...

. . . (HnMn)
T

HT
n













R−1







H0

H1M1 H1

H2M2M1 H2M2 H2

...
. . .

. . .
HnMn...M1 ... HnMn Hn






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Hessian - State formulation

Sx = LTD−1L+HTR−1H

Sx =




















B−1
0 +MT

1 Q−1
1 M1 −MT

1 Q−1
1

−Q−1
1 M1 Q−1

1 +MT
2 Q−1

2 M2 −MT
2 Q−1

2

−Q−1
2 M2

. . .

−MT
n−1Q

−1
n−1

−Q−1
n−1Mn−1 Q−1

n−1+MT
n Q−1

n Mn −MT
n Q−1

n

−Q−1
n Mn Q−1

n





















+







HT
0 R−1

0 H0

HT
1 R−1

1 H1

. . .
HT
n R−1

n Hn






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Aims

How does the condition number of the Hessian change with
different input parameters?

How does this affect convergence of the minimisation?

Note: Theoretical bounds on the condition number have been
obtained. Here we just illustrate the effects with numerical results.
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Previous results

Previously we have shown for the strong constraint case
(preconditioned by B1/2) that the bounds on the condition number
will increase as
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Previous results

Previously we have shown for the strong constraint case
(preconditioned by B1/2) that the bounds on the condition number
will increase as

the observations become more accurate;

the observations spacing decreases;

the background becomes less accurate;

the background error correlation lengthscales increase.

(Haben et al. (2014) Tellus, Haben et al. (2014) Comput. Fluids)
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Numerical model

We consider results in the context of a simple system, the 1D
advection equation with periodic boundary conditions:

∂u

∂t
+ a

∂u

∂x
= 0

with

u(x , 0) = be
−

(x−c)2

2d2 .

The model is discretized using an upwind numerical scheme with
N = 50 grid points, a = −1.
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Assimilation scheme

Background error covariance matrix B = σ2
bCSOAR , with

σb = 0.1, L(C ) = 2∆x .

Model error covariance matrix Qi = σ2
qCLAP , with

σq = 0.05, L(C ) = ∆x ,.

Observation error covariance matrix Ri = σ2
o I , with σo = 0.05.

Observations every 2 grid points and every 5 time steps in 50
time step window.

∆x = 0.01,∆t = 0.02.
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Effect of observation accuracy

Large observation error variance

Matrix Condition Number No. of iterations

Sp 834 87

Sx 1.11× 105 2821

D 838 -

Small observation error variance

Matrix Condition Number No. of iterations

Sp 2.71× 106 191

Sx 1.84× 105 176

D 838 -
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Effect of observation accuracy

Condition number as σq/σo varies:
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Figure : κ(Sp) (solid line) and κ(Sx) (dashed line) as a function of ratio
σq/σo . Condition number minimum point at σq = σo (dotted line).
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Effect of assimilation window length - Error formulation
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Figure : κ(Sp) as a function of assimilation window length, n, and
number of spatial observations, q.
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Effect of assimilation window length - State formulation
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Figure : κ(Sx) as a function of assimilation window length, n, and
number of spatial observations, q.
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Reduction of model error variance

We now set σb/σq = 200.

Matrix Condition Number No. of iterations

Sp 8.53× 106 635

Sx 1.00× 108 1756

D 8.53× 106 -
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Change in model error variance - Condition numbers
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Figure : κ(Sp) (solid line) and κ(Sx) (dashed line) as a function of ratio
σb/σq. Condition number minimum point at σb = σq (dotted line).
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Correlation length-scales

0
0.02

0.04
0.06

0.08

0
0.02

0.04
0.06

0.08
0

500

1000

1500

2000

2500

 

L(C
B
)L(C

Q
)

 

κ(
S

p)

200 400 600 800 1000 1200 1400 1600 1800 2000

0
0.01

0.02
0.03

0.04
0.05

0.06
0.07

0.08

0

0.02

0.04

0.06

0.08
0

0.5

1

1.5

2

2.5

3

x 10
4

 

L(C
B
)L(C

Q
)

 

κ(
S

x)

0.5 1 1.5 2 2.5

x 10
4

Figure : Condition number of κ(Sp) (left) and κ(Sx) (right) as a
function of L(CB) and L(CQ).

A.S. Lawless, a.s.lawless@reading.ac.uk Weak-constraint 4D-Var



Weak constraint 4D-Var Experimental design Numerical results Conclusions

Conclusions

The two different formulations of the WC problem have
Hessians with different structures.

A.S. Lawless, a.s.lawless@reading.ac.uk Weak-constraint 4D-Var



Weak constraint 4D-Var Experimental design Numerical results Conclusions

Conclusions

The two different formulations of the WC problem have
Hessians with different structures.

The condition number of both Hessians is sensitive to input
parameters, with the state formulation generally being more
sensitive.
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Conclusions

The two different formulations of the WC problem have
Hessians with different structures.

The condition number of both Hessians is sensitive to input
parameters, with the state formulation generally being more
sensitive.

Sensitivities backed up by theory (not shown).
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Conclusions

In particular we find the following sensitivities:

For increasing observation accuracy the error formulation is
more sensitive, while for small observation accuracy the state
formulation is badly conditioned.
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Conclusions

In particular we find the following sensitivities:

For increasing observation accuracy the error formulation is
more sensitive, while for small observation accuracy the state
formulation is badly conditioned.

The error formulation is more sensitive to an increase in
window length.
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Conclusions

In particular we find the following sensitivities:

For increasing observation accuracy the error formulation is
more sensitive, while for small observation accuracy the state
formulation is badly conditioned.

The error formulation is more sensitive to an increase in
window length.

The state formulation is more sensitive to having fewer
observations.
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Conclusions

In particular we find the following sensitivities:

For increasing observation accuracy the error formulation is
more sensitive, while for small observation accuracy the state
formulation is badly conditioned.

The error formulation is more sensitive to an increase in
window length.

The state formulation is more sensitive to having fewer
observations.

For larger model error the state formulation becomes more ill
conditioned than the error formulation.
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Conclusions

In particular we find the following sensitivities:

For increasing observation accuracy the error formulation is
more sensitive, while for small observation accuracy the state
formulation is badly conditioned.

The error formulation is more sensitive to an increase in
window length.

The state formulation is more sensitive to having fewer
observations.

For larger model error the state formulation becomes more ill
conditioned than the error formulation.

The state formulation is more sensitive to changes in the
condition number of D.
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Outlook

Error formulation seems more stable than state formulation,
but not good for longer windows.
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Outlook

Error formulation seems more stable than state formulation,
but not good for longer windows.

Preconditioning of each formulation could be considered.

A.S. Lawless, a.s.lawless@reading.ac.uk Weak-constraint 4D-Var



Weak constraint 4D-Var Experimental design Numerical results Conclusions

Outlook

Error formulation seems more stable than state formulation,
but not good for longer windows.

Preconditioning of each formulation could be considered.

Effect of correlated observation errors?
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Outlook

Error formulation seems more stable than state formulation,
but not good for longer windows.

Preconditioning of each formulation could be considered.

Effect of correlated observation errors?

Saddle-point formulation.
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