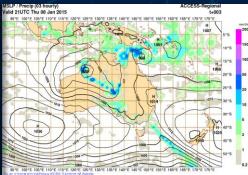


Supercomputer Programme


A seven-year programme to enhance the computational and numerical prediction capabilities of the Bureau's forecast and warning services.

Tim Pugh, Lesley Seebeck, Tennessee Leeuwenburg, Andrew Khaw, Warwick Howland Bureau of Meteorology, Melbourne, Australia Wednesday 26 October 2016

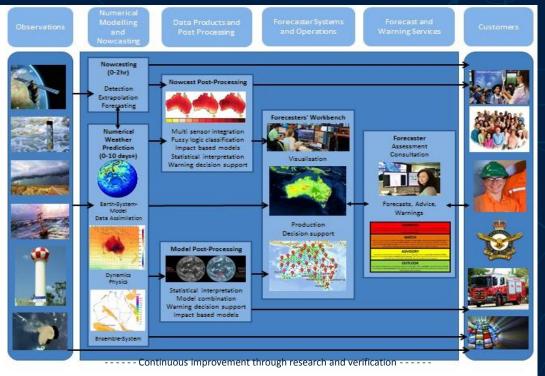
Reliable, resilient, national capability

- National/Global observing system: atmosphere, marine, water, land, space
- 24/7 Operational forecasting systems for weather, climate, oceans and flooding
- Supercomputing and massive data storage
- High uptime internet communications and disaster recovery
- Professional forecasting capability across multiple disciplines
- Experts out posted in the Australian Defence Force, State Emergency Centres and Aviation Operation Centres

Establishing the Supercomputer Programme

New funding announced by Australian Government in May 2014

Seven Year Programme from July 2014 to July 2021


 Funding for Supercomputer system, Supporting Data Processing and Storage systems, Data Centre and Networks, and Numerical Prediction Project (Transitions to Operations)

Programme Investment Areas across People, Processes, Science and Technology

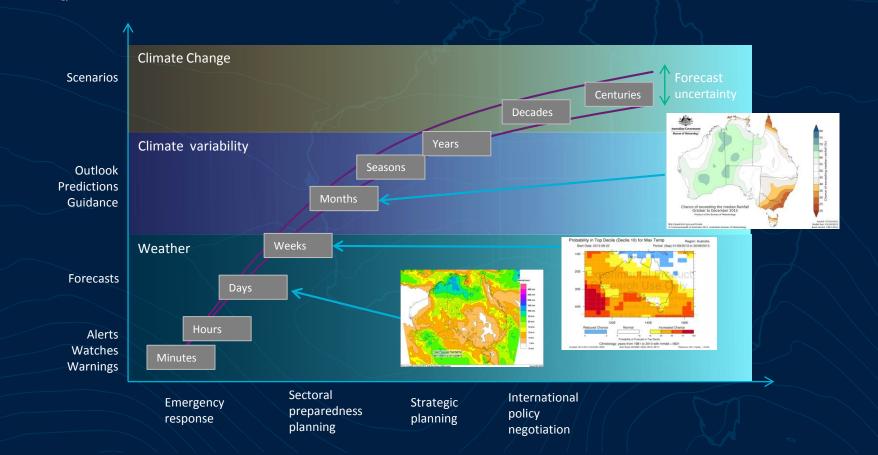
- » Benefit Planning and Realisation (Supercomputer and Services Board)
- Investments, Priorities, Delivery and Schedules, Social Economic Value, Return on Investment
- » Infrastructure (Information Systems and Services)
 - Data centre, networks, HPC and Data Intensive Computing, Software Services, Suite and Job Scheduling, UM Modelling Infrastructure, System and Application Monitoring
- » Delivery (Science to Services)
 - Scientific Computing Service, Model Build Team, Numerical Prediction, Guidance Post Processing, Model Data Services, Software Lifecycles, Verification Frameworks, Software Services
- » Scalability (Research and Development)
 - Future architectures, Growth in Compute and Data, Software Engineering, Skills

Forecast Production Value Chain

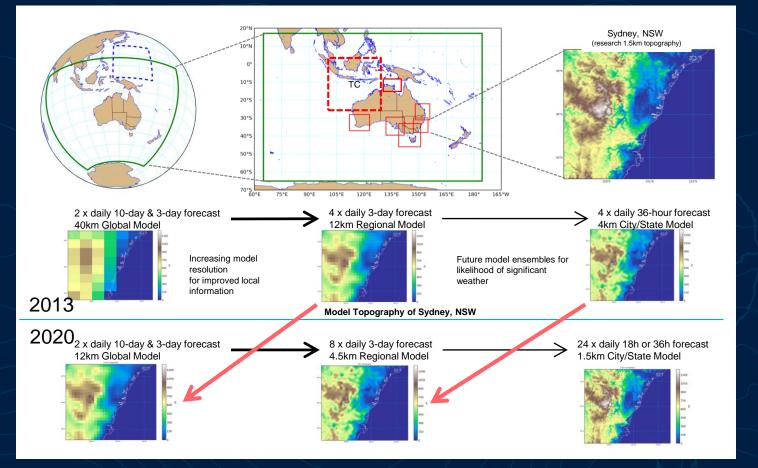
Investments and Outcomes


More accurate - particularly for the location, timing and direction of rainfall, storms and wind changes More up-to-date - more frequent forecasts available More valuable - for decision makers, by quantifying forecast outcome probabilities using ensembles More responsive - through capability to produce additional, on-demand,

detailed forecasts for multiple extreme weather and hazard events across Australia.


Key Projects in Value Chain - Benefits

Bureau of Meteorology


Environmental Modelling in the Bureau

Modelling to Achieve Outcomes

Capability	2014 HPC system	New HPC systems (2016 to 2021)
Model grid resolution		
(horizontal only)		
ACCESS-G (global)		25 km > 10 km
ACCESS-R (regional) ACCESS-C (city)		12 km > 4.5 km 1.5 km
Regular forecast updates	4 KIII	LO KIII
(times per day)		
Global	4	4
Regional		8
City and on-demand		Up to 24
Tropical cyclone forecasts		Up to 3 concurrent events
(horizontal grid resolution)		12km > 4.5km
(forecast length)	Out to 3 days	Out to 5 days
Ensembles Forecasts (Certainty for decision makers)	None	Yes (Global, City, TC, Relocatable)
Capability to produce additional, on-demand, high-resolution forecasts for extreme weather	None	1.5 km Up to 4 concurrent events Up to 24 times per day

Numerical Weather Prediction Roadmap

Projection of Nominal Modelling Resolutions for Future Computing Systems

High impact weather modelling of TCs, Aviation, Severe TS, Rainfall, Bushfires, etc.

To improve our understanding of and ability to predict severe weather, including for bush fires, tropical cyclones, severe thunderstorms and heavy rainfall, through the use of highresolution modelling in conjunction with available observations

A requirement for operational NWP is to provide outputs that meet societal needs, and severe weather prediction is a key deliverable

- High resolution grids to simulate convective-scale high impact weather and hazards
- Rapid update cycles for emergency response
- High resolution ensembles for probabilistic forecasting Certainty of prediction

Australia Extended-Range TC Forecasts

Main aims:

Early detection of conditions for cyclone genesis

- Forecasts to 5 days
- Better forecasts of cyclone genesis and intensity
- Wave forecasts under TCs
 - Storm surge prediction and impacts to coastal communities

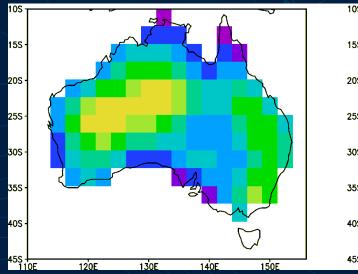
In development:

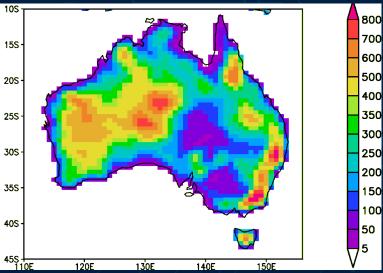
- NW Australia region
- Grid resolution increase from 12 km to 4.5 km
- Simulate TC events from 3-day to 5-day forecasts
- 4D-Var with vortex specification (bogussing)
- Early detection, daily running, not just when a cyclone is named
- One-way coupling to wave model

Remotely sensed observations

Advanced radar – more accurate rain and hail

New satellites – greater spatial detail, more frequent updates Lightning network – weather watch in areas not covered by radar


Observations from remote sensing networks let us see what weather is happening everywhere in Australia. They also provide essential input for weather forecast models.


ACCESS Multi-week to Seasonal prediction

- A new, improved (better physics), high-resolution multi-week to seasonal forecast system
 - \circ 250km (POAMA2) → 60km (25 km ocean) (ACCESS-S)
 - \circ 17 levels → 85 levels
- Better estimates of uncertainty and risk

Current 250 km system

New 60 km system

AUSTRALIS, the Bureau's Production

Supercomputer details

CRAY Inc. WILL SUPPLY THE NEW SUPERCOMPUTER

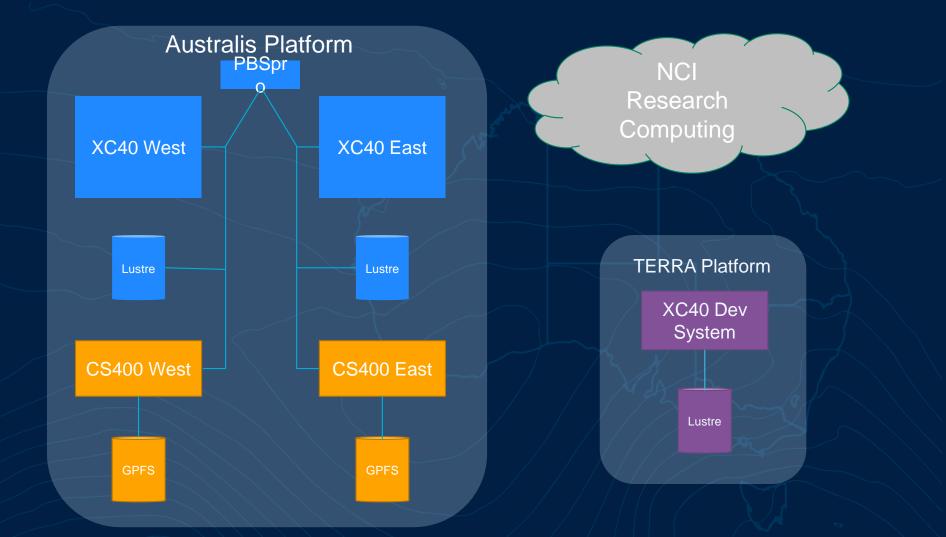
Cray[®] XC[™] Series: complete late 2018

Australis Production System

38x performance, 8x electrical power

	2015 Australis (delivered)	2018 Addition (projected)	2018 Australis (projected)	Ngamai HPC System (Retired Oct'16)	Relative Increase
Processor	Intel Xeon Haswell 12-core, 2.6 GHz	Intel Xeon Skylake	Intel Xeon Haswell + Skylake	Intel Xeon Sandy Bridge 6-core, 2.5 GHz	Increase relative to Ngamai System
Nodes	2,160	1,952 =	4,112	576	2015: 3.8x 2018: 7.1x
Cores	51,840	78 <u>.0</u> 80	129,920	6,912	2015: 7.5x 2018: 18.8x
Aggregate Memory	276 TB	375 TB	651 TB	36.9 TB	2015: 7.5x 2018: 17.7x
Usable Storage	4,320 TB	4,320 TB	8,640 TB	214 TB	2015: 20.2x 2018: 40.4x
Storage Bandwidth	135 GB/s	171 GB/s	306 GB/s	16 GB/s	2015: 8.4x 2018: 19.1x
Sustain system performance (SSP)	253	365	618	16	2015: 15.6x 2018: 38.1x
Typical Power Use	865 kW	783 kW	1,648 kW	200 kW	2015: 4.3x 2018: 8.2x

Infrastructure Investments


Addition of small Cray XC40 dev system "TERRA" to support delivery pathway from NCI to Production

- 144 Nodes, 3456 Intel Haswell cores, 34TB memory, 1.44 PB Lustre data storage
- Addition of six Cray DataWarp I/O nodes (48TB) for workflow optimisation
- Addition of NVIDIA GPUs and Intel Xeon Phi planned
- 2018 TERRA Cray upgrade (projected): 321 nodes, 10536 cores, 2.88 PB Lustre data storage

Integrated CS-400 data processing system with 40 compute nodes to AUSTRALIS

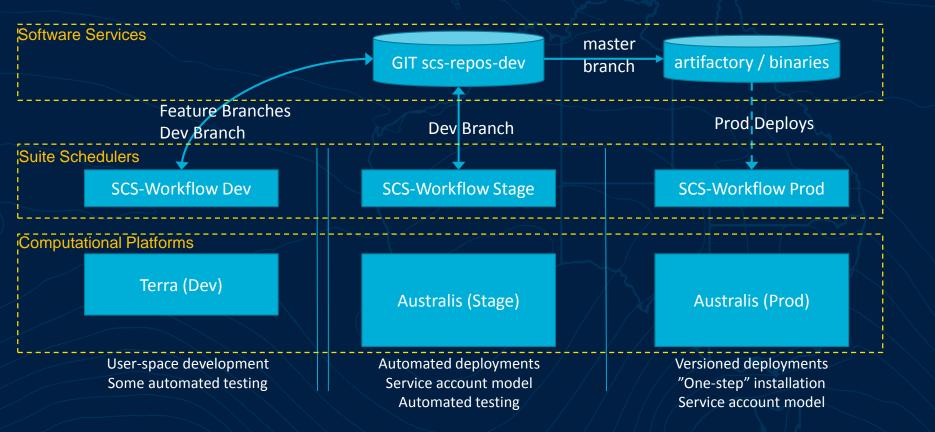
- Dual socket nodes with Intel 18-core Broadwell, 256GB DDR4, FDR Infiniband interconnects
- Addition of 1.6 TB Intel NVMe flash on all compute nodes and a handful of NVIDIA K80 GPUs
- GPFS data storage system based on DDN GS14K system with 150TB SSD & 2PB HDD storage.

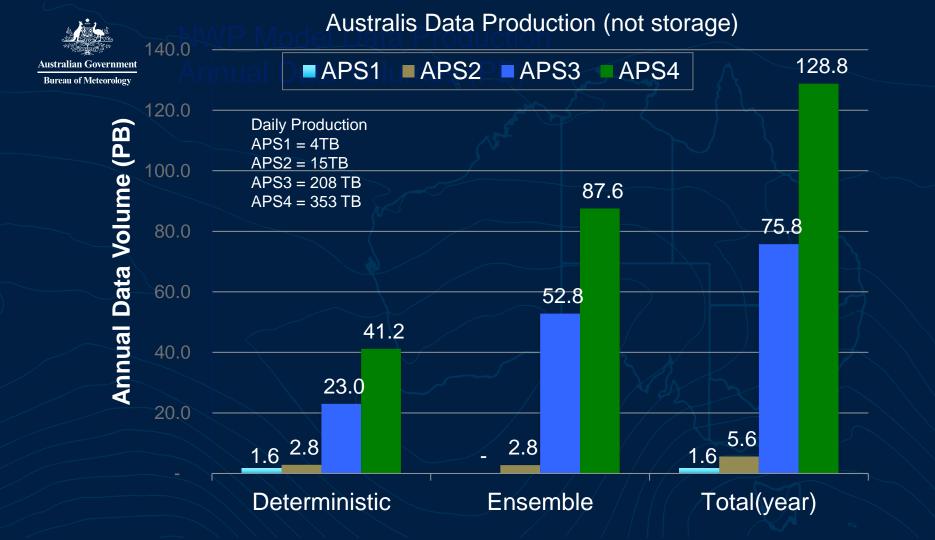
Commercial data centre hosting Cray XC40 (~860 KW) and later, XC+ system (~1650 KW) and network links

Supercomputer Programme Challenges

- Improving Delivery (time, quality)
- Reducing Complexity (decoupler)
- Improving Software Engineering
- Scaling infrastructure for next generation

Improving Delivery


Dev / Stage / Prod Packaging

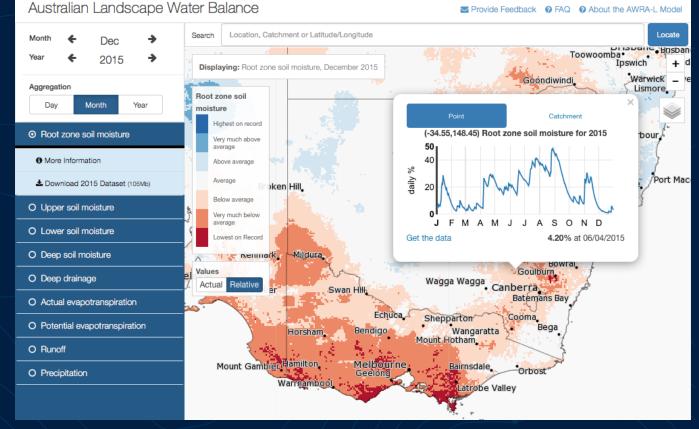

- Systems are "installable" through simple scripts
- Versioned binary components are deployed to the supercomputer
- Versioned scheduler scripts are deployed to the workflow machines
- Deployments are 100% hands-off automated in the staging environment

Benefits

- Cuts down on issues around configuration of modelling systems
- Promotes standard approaches to system packaging and deployment
- Provides strong integration testing
- Reduction in manual effort for testing and deployment
- Reduces errors by forcing repeatable processes
- Reduces manually-introduced errors
- Increases the cost of preparation slightly, but significantly reduces cost of production deployments
- Provides the foundation for end-to-end automated integration testing
- Provides the possibility of hands-off production deployment

Achievements in Modelling Automation

HPC Decoupler



AWRA-L Web Application

- A unique service!
- Updated daily
- See all variables at daily, monthly or annual time slices
- Download the grids at a resolution of 5km x 5km
- Past 10 years data
 available to all

•

Registered users access >100 years and tailored products

http://www.bom.gov.au/water/landscape

Scalability Challenges

Future architectures

- Compute processors (multi-core, many-core, memory pools, FPGA?)
- Data Intensive infrastructure (accelerators, networks, data storage cache)
- Programming paradigms including Hybrid, PGAS, Machine Learning, ...
- HPC Clouds, containers and VMs Dynamic allocation of resources and workflows

Growth in Compute and Data

Only limited by what we can afford and manage...

Modernising Software - Design and Engineering

- Multi-threaded and hybrid parallelism (OpenMP, MPI) in applications
- Task Parallelism in workflows
- Data I/O programming (parallel, API access)

This is where we focus on:

- Managing the data
- Improving workflows
- Accelerating outcomes

Tsunami Events – Modelling Realtime Events

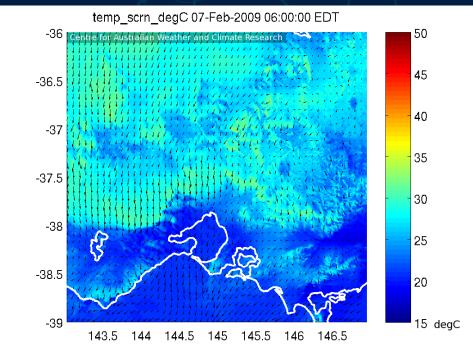
- Currently based on pre-computed scenarios
- Runtime of >60 minutes made it impossible to run a real time simulation during tsunami event
- Performance improvement in 6 weeks by two HPC programmers.
- Initial results of 24-hour simulation of tsunami wave propagation
 - Serial code Intel Xeon Haswell
 - > 3600 sec (53 min)

OpenMP, 24 cores Intel Xeon Haswell 262 sec (~4.4m)

CUDA, 1 GPU NVIDIA K80 Telsa 134 sec (~2.3 min)

CUDA, 8 GPUs NVIDIA K80 Telsa 22 sec (~1/3 min)

Parallel and GPU version allow on-demand simulation of Tsunami event


- More accurate forecasts of effects
- Ensemble modelling
- Better uncertainty estimation, improved risk map

Will all this development be worth it?

Black Saturday 7 Feb 2009

Fire-weather/heat wave

Model run at 400m

J. Kepert, R Fawsett

Thank you

Any questions?

ENVIRONMENTAL INTELLIGENCE

Conclusions drawn from environmental observations and models to guide decisions and actions by governments, businesses and individuals.

What increased high performance computing power gives you

lodel view improve	ements	A Charles of	
Finer grid resolution	More freque	nt updating Gre	ater resilience to failure
			$\langle \rangle \rangle \langle \rangle$
ervice view improv			
Cyclones	Severe storms	Fires	Flooding rains
- track	- location - lead time	- wind speed - wind direction	- location - volumes
- intensity - structure	- intensity	- local detail	- lead time
lser view improven	nents		
Industry	Community	Infrastructure	Emergency service
- Fewer false alarms	- More timely	- Increased	- More effective
	evacuation	preparedness	deployment
- Shorter closedown		preparentess	

Modelling Packaging and Automation

Dev / Stage / Prod Packaging

- Systems are "installable" through simple scripts
- Versioned binary components are deployed to the supercomputer
- Versioned scheduler scripts are deployed to the workflow machines
- Deployments are 100% hands-off automated in the staging environment

Automation is Based off Git

- Jenkins is the tool which monitors the repository
- New changes are deployed automatically, with any issues reported to developers
- SVN can also be used, but we have used git

Modelling System Design Guidelines

- Systems must:
 - Compile automatically from a single script or Makefile
 - Deploy compute components (binaries, libraries and supporting scripts) automatically from a single script or Makefile
 - Deploy scheduling components (SMS or Cylc suites) automatically from a single script or Makefile
 - Not rely on having only a single instance (of the model or system) running at once per user
 - Ship with at least 20 automated tests (future goal for all systems post porting)

Modelling Packaging and Automation

Benefits

- Cuts down on issues around configuration of modelling systems
- Promotes standard approaches to system packaging and deployment
- Provides strong integration testing
- Reduction in manual effort for testing and deployment
- Reduces errors by forcing repeatable processes
- Reduces manually-introduced errors
- Increases the cost of preparation slightly, but significantly reduces cost of production deployments
- Provides the foundation for end-to-end automated integration testing
- Provides the possibility of hands-off production deployment

What is Jenkins?

- A glorified shell script scheduler OR
- A robot agent that watches you code and gives you feedback

- Builds, tests and compiles reports on your software
- Provides an at-a-glance readiness dashboard of your systems
- A basically ubiquitous industry standard build tool
- A nagging nanny that mainly just picks up typos and silly mistakes

What is Artifactory?

- Like version control, but for binaries
- Suitable for large binary files, like topography
- Stores versioned binaries like compiled objects
- Allows you to know what version of code, and what versions of binaries are/were in use
- By testing specific versions of binaries, you can get good confidence that any non-code file changes are also safe to deploy