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Antarctica: Why do we care?

Climate is changing more
rapidly in polar regions
than global average

Ice mass budget is poorly
understood:

Ô Most of atmospheric
warming is localized
over the Western
Antarctic Peninsula.

Ô Ocean currents likely
play a significant role
in ice melt/freezing.

Ô Moisture transport
via extratropical
cyclones = ???

Holland and Landrum 2014
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Antarctica: Why do we care?

Sparse population⇒ few permanent observation stations, relatively large
errors in numerical models:

More weight on numerical
model parameterizations, and

Less weight on observations.

Result: Atmospheric analyses
exhibit high uncertainty⇒ very
difficult to support scientific studies
with:

Ô atmospheric reanalyses,

Ô numerical models of the
atmosphere,

Ô coupled numerical models
that depend on atmospheric
forcings.

Anomaly correlations greater that 0.9

From “Review of GFS forecast skills in 2014”, Fanglin Yang
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Atmospheric analyses

xa : Model analysis
xb : Background (short-term model forecasts)
xo : Observations

xa = xb + K
(

xo −H(xb)
)

xa − xb

Analysis increment
= K

(
xo −H(xb)

)
where:

K = BHT [HBHT + R
]−1

H : Function that maps state to observation space
B : Background error covariance
R : Observation error covariance

Analysis increment : The adjustment observations make to background
model forecast; the impact of assimilating observations



Can we use data assimilation to diagnose the precise
source of model error?

Klinker and Sardeshmukh (1992) and Rodwell and Palmer (2007):

Ô Mean analysis increment ' - mean model forecast tendency when
averaged over many data assimilation cycles.

Ô For stationary systems, a non-zero analysis increment⇒
divergence of model state from observations via the model
forecast tendencies.

Ô Good initial analysis→ model errors that develop in the early
stages of a forecast simulation must be associated with errors in
the model parameterizations of atmospheric processes (See also
Wlliams and Brooks 2008; Xie et al. 2012; Williams et al. 2013).



Mean initial tendency and analysis (MITA) increment
method

Schematic
θo(t): Observations of θ at

time t

θa
0,0: Analysis at

forecast time step j = 0,
data assim. (da) cycle i = 0

θb
0,n: Background forecast

at forecast time step j = n,
da cycle i = 0
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Mean initial tendency and analysis (MITA) increment
method

Schematic
θo(t): Observations of x at

time t
θa

0,0: Analysis at
forecast time step j = 0,
da cycle i = 0

θb
0,n: Background forecast

at model time step j = n,
da cycle i = 0

INCi = θa
i,0 − θb

i−1,n (1)

and the model forecast tendency
can be written as:

θb
i,n = θa

i,0 + ∆ti
1
n

j=n∑
j=0

θ̇i,j

⇒ θb
i,n = θa

i,0 + ∆ti
〈
θ̇i

〉
. (2)



Mean initial tendency and analysis (MITA) increment
method

Summing the analysis increment over m data assimilation cycles from (1):

m∑
i=1

INCi =
m−1∑
i=1

(
θa

i,0 − θb
i−1,n

)
+ θa

m,0 − θb
m−1,n. (3)

After a little algebra, the above can be re-written as:

m∑
i=1

INCi = −∆ti
m−1∑
i=1

〈
θ̇b

i

〉
− θb

0,n + θa
m,0.

we can re-write in terms of just the analysis by substituting (2) into the above:

θb
0,n = θa

0,0 + ∆t0
〈
θ̇b

0

〉
to get

m∑
i=1

INCi = −∆ti
m−1∑
i=1

〈
θ̇b

i

〉
− θa

0,0 + θa
m,0 + ∆t0

〈
θ̇b

0

〉
m∑

i=1

INCi = −∆t
m−1∑
i=0

〈
θ̇b

i

〉
+ θa

m,0 − θa
0,0. (4)
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Mean initial tendency and analysis (MITA) increment
method

m∑
i=1

INCi = −∆t
m−1∑
i=0

〈
θ̇b

i

〉
+ θa

m,0 − θa
0,0. (5)

The last two terms of the R.H.S. of (5) is the ‘drift’ of the model’s climate state
between the first and last data assimilation cycle.

If the weather at the beginning and end of the data assimilation cycling is
similar, then from (5):

m∑
i=1

INCi ' −∆ti
m−1∑
i=0

〈
θ̇b

i

〉
(6)

⇒ INC = −∆tdaθ̇b
i (7)

when averaged over m data assimilation cycles where ∆tda is the time step
between da cycles (usually 6 hours).
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Other studies using the (MITA) method

Kay et al. 2011: Diagnosed unrealistic cloud increases over the Arctic
using Community Atmosphere Model (CAM).

Cloud-Associated Parameterizations Testbed: ‘CAPT’

Ô Deficiencies in climate models can not be identified simply by
analyzing climate statistics (e.g. Phillips et al. 2004; Williamson et
al. 2005; Williamson and Olson 2007; Hannay et al. 2009;
Medeiros et al. 2012).

Ô Must initialize forecasts from analyses produced with another
model, and thus first few days of forecasts show inconsistencies
between model and analysis instead of the true model bias.

Best when analysis used to initialize a forecast is produced by a data
assimilation system using the same model (Rodwell and Palmer 2007)

Although MITA has been applied in global models and by operational
centers (i.e. ECMWF; Rodwell and Jung 2008) and Met Office Unified
Model (Martin et al. 2010), it has never been applied to a limited area
model.
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Other studies using the (MITA) method
Cavallo, Berner, and Snyder (2016):
Used EAKF with Advanced
Hurricane WRF model for 2010
Atlantic hurricane season.

Warm surface bias found from large
PBL heating, but was a result of
erroneous SSTs.

Warm mid-tropospheric bias found
from deep convection in tropics.

INC

θ̇

Sea surface temp. (WRF - GFS)



Hypothesis

Hypothesis: The source(s) of model bias can be diagnosed to the precise
physical parameterization and location(s) using the Weather Research and
Forecasting (WRF) model forecast tendencies when using data assimilation.

The analysis increment, alone, does not give the exact source of the
model bias.

Forecast tendencies (θ̇) are computed in the WRF integration:

θ̇ = θ̇dynamics + θ̇physics

= θ̇dynamics +
[
θ̇radiation + θ̇pbl + θ̇cumulus + θ̇microphysics

]

The above budget can be completely closed using WRF

If the largest adjustment is expected in the first few time steps, do we
only need a fraction of the time steps to diagnose the model error?
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Antarctic DART (A-DART)

Model = Antarctic
Mesoscale Prediction
System (AMPS; Powers et
al. 2012)

Data assimilation = Data
Assimilation Research
Testbed (DART; Anderson
et al. 2001), Ensemble
Kalman Filter (EnKF) using
setup similar to Cavallo et
al. 2012

Assimilates surface and
marine stations,
radiosondes, ACARS,
GPS, cloud-track wind.

Domain and
topography
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Model = Antarctic
Mesoscale Prediction
System (AMPS; Powers et
al. 2012)

Data assimilation = Data
Assimilation Research
Testbed (DART; Anderson
et al. 2001), Ensemble
Kalman Filter (EnKF) using
setup similar to Cavallo et
al. 2012

Assimilates surface and
marine stations,
radiosondes, ACARS,
GPS, cloud-track wind.

“Conventional” observations
assimilated



Antarctic DART (A-DART)

Cycled continuously from
21 September 00 UTC - 21
October 2010

Coincides with Concordiasi
intensive observation
period (IOP) (Rabier et al.
2010)

One ensemble member
selected for our analysis
(here member 35)

MITA evaluation period: 00
UTC 21 September - 18
UTC 30 September

Terrain (grays), Oct. 2010 mean sea ice
extent (white), radiosonde sites (pink),
and Concordiasi dropsondes over the
high plateau (cyan), continental low

elevation (blue), total sea ice (green),
partial sea ice (brown), and open water
(red). Triangles (squares) are daytime

(nighttime) soundings.



Summary of A-DART

AMPS A-DART
Dynamical WRF (ARW) v. 3.0.1.1 with polar modifications
core ∆t = 144 s
Grid(s) ∆x = 45,15,5 (x3),1.33 km ∆x =45 km

Nz = 44 Nz = 44
Init. times 00,12 UTC daily 00,06,12,18 UTC daily
Data GFS “cold start”, EnKF “warm start”
assimilation then 3D-VAR

Deterministic 96 ensemble members

SST and sea ice updates, fractional sea ice
Physics Longwave: RRTM, Shortwave = Goddard

PBL: Mellor-Yamada-Janjic
Surface layer: Monin-Obukhov

Land surface: NOAH
Microphysics: WSM 5-class

Cumulus: Kain-Fritsch



Antarctic DART (A-DART)

Bias: Forecast - Observations
(radiosonde)

Blue = GFS

Red = AMPS

Black = A-DART

Warm upper-level bias

Cold mid-troposphere bias

Warm boundary layer bias



Antarctic DART (A-DART)

200 hPa Analysis Increment

Observations are increasing the circumpolar flow.

⇒ The large-scale upper-level circulation in the model is too weak.



Immediate corrections in A-DART: Observations

Observations assimilated: “Conventional”
Warm upper-level bias⇒
polar vortex too weak in
A-DART

Too weak of an
equator-to-pole temperature
gradient.



Immediate corrections in A-DART: Observations

Observations assimilated: “Conventional”
+ MODIS polar orbiting

atmospheric motion vectors

Warm upper-level bias⇒
polar vortex too weak in
A-DART

Too weak of an
equator-to-pole temperature
gradient.

Do polar orbiting data
correct the temperature
gradient?



Immediate corrections in A-DART: Physics

Ozone mixing ratios
21 September 2010 at 00 UTC

Warm upper-level bias⇒
polar vortex too weak in
A-DART

Too weak of an
equator-to-pole temperature
gradient.

Default ozone
concentrations are too high
in WRF?

⇒ Consistent with too much
warming in stratosphere
over pole.

MITA experiments begin
from here to determine
exactly where the remaining
model bias originates.



Experiments

Control configuration =
A-DART, conventional
observations

1 Control + polar orbiting
wind obs. + CAM ozone

2 Control + AIRS retrievals

Observations assimilated
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Analysis increment: What is an appropriate evaluation
window?

Forecast tendencies at 850 hPa for each ∆t

θ̇(t) θ̇(t)physics



Analysis increment: What is an appropriate evaluation
window?

m∑
i=1

INCi = −∆t
m−1∑
i=0

〈
θ̇b

i

〉
+θa

m,0−θa
0,0

Analysis increment reflects the
mean forecast tendencies during

the 6-h DA cycling period.

The forecast tendencies of the first
hour do not represent the mean
model bias of the 6-h DA cycling

period.

If we would like to analyze the
source of model bias during DA

cycling, then any subset of the 1-h+
forecast tendencies are sufficient.



Tendency decomposition: Hours 1-2

Model bias = − INC
∆tda

= θ̇ + Endpoints + Residual

Entire domain: vs. height AGL Entire domain: vs. pressure



Why does this not match the expected bias?

Radiosondes are preferentially located ∼60◦S latitude

Model bias
with respect to radiosondes

Thick yellow circles =
radiosonde locations



Why does this not match the expected bias?

Upper-level bias



Why does this not match the expected bias?

Boundary layer bias



Tendency decomposition

θ̇ = θ̇physics + θ̇dynamics + Residual

θ̇physics = θ̇radiation + θ̇microphysics + θ̇cumulus + θ̇PBL

Upper-level bias: 11.4 km above ground level



Tendency decomposition

In all horizontal slices to be shown subsequently, fields are masked to include
only those grid points where:

- sgn
(
INCi,j

)
= sgn(θ̇)

Ô Includes only locations where observations are pulling model
state in opposite direction.

θ̇i,j (any component) =

{
θ̇i,j (any component) if sgn(θ̇i,j ) = sgn(θ̇)

0 otherwise

Ô If θ̇ < 0, all other components masked to exclude locations
where θ̇ > 0

Ô Includes only locations where the tendency component is
pulling the model state in the same direction as the total
model bias.



(Experiment 1) 11.4 km above ground level
θ̇ INC

θ̇physics θ̇longwave



(Experiment 2) 11.4 km above ground level
θ̇ INC

θ̇physics θ̇longwave



Experiment 1 vs. Experiment 2

θ̇ θ̇physics,dynamics

Upper-level improvement from 11-15 km

Lower-level improvement from 0-2 km

Degradation from 2-10 km. Why?



New mid-tropospheric bias?

Why is there a mid-tropospheric cold bias? Let’s simplify by choosing a level
in Experiment 2 where:

Net tendencies are strongly negative and

Mean dynamics tendencies ∼ 0 K day−1

⇒ 4-km above ground level



Experiment 2: 4-km above ground level
θ̇ INC

θ̇dynamics θ̇physics



Experiment 2: 4-km above ground level
θ̇ INC

θ̇shortwave θ̇longwave



Cloud bias?
Fogt and Bromwich (2008):

AMPS model

Vertically integrated qc an qi

6 months averages (DJF
2003-2004, 2004-2005)

“Deficiencies in capturing
low-level cloudiness over cold
ice surfaces primarily related to
insufficient supercooled liquid
water produced by the
microphysics scheme”



Cloud bias?
Observations show that clouds can maintain liquid water for
temperatures→ -34◦C (e.g., Hobbs and Rango 1998; Intrieri et
al. 2002; Shupe and Intrieri 2004; Zuidema et al. 2005)

Cloud phase not represented well in NWP (e.g., Sandvik et al.,
2007; Tjernström et al., 2008; Klein et al., 2009; Solomon et al.
2009; Karlsson and Svensson, 2011; Barton et al., 2012; Birch
et al., 2012; de Boer et al., 2012)

High uncertainty in phase partitioning due to dependence on
number, shape, and size of ice crystals (e.g., Chen and Lamb,
1994; Sheridan et al., 2009; Ervens et al., 2011; Hoose and
Möhler, 2012)

Particle size distributions are constant in single-moment
microphysics, with specifications based on midlatitude weather
systems (Morrison 2011).



New Experiment

Control configuration =
A-DART, conventional
observations

1 Control + polar orbiting
wind obs. + CAM ozone

2 Control + AIRS retrievals

3 Control + AIRS retrievals
+ Double-moment
microphysics

Prognostic equations for:
qx = Mixing ratio of x

N = Number concentration



Experiment 2 vs. Experiment 3

Cool bias in 2-8 km layer is alleviated (somewhat) with double moment
microphysics. Where is this change occurring?



Experiment 2 vs. Experiment 3

Cool bias in 2-8 km layer is alleviated (somewhat) with double moment
microphysics. Where is this change occurring?

Following plots are zonally averaged tendencies as a function of
pressure and height above ground level (AGL)



Exp. 2 vs. Exp. 3: Zonal average cross sections
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Exp. 2 vs. Exp. 3: Zonal average cross sections

θ̇dynamics

Experiment 2 Experiment 3

Experiment 3 - Experiment 2



Exp. 2 vs. Exp. 3: Zonal average cross sections

θ̇physics

Experiment 2 Experiment 3

Experiment 3 - Experiment 2



Exp. 2 vs. Exp. 3: Zonal average cross sections

θ̇latent heating

Experiment 2 Experiment 3

Experiment 3 - Experiment 2



Exp. 2 vs. Exp. 3: Zonal average cross sections

θ̇radiation

Experiment 2 Experiment 3

Experiment 3 - Experiment 2



Adjustment from initial conditions

θ̇(t) at 4-km AGL
Experiment 1 Experiment 2



Adjustment from initial conditions

Cavallo, Berner, and Snyder (2016):

EAKF with Advanced Hurricane
WRF (Cavallo et al. 2012)

EAKF warm starts: Adjustment
∼3-5 model time steps (less than
20 minutes)

GFS cold starts: Tendencies
equilibrate at ∼ 3 days

The number of time steps before
model error begins to dominate
initial condition error may vary
between modeling configurations
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Mean initial tendency and analysis (MITA) increment
method: Summary

MITA increment method is:

Ô a diagnostic using data assimilation to “narrow down”
source of model bias to better direct hypothesis testing.

Ô applied here with a limited area numerical weather model
over the Antarctic region.

Forecast tendencies converged to the bias reflected by analysis
increment by ∼1 simulation hour.

Ô Only a small subset of forecast tendencies are necessary
to represent the systematic bias.

Significant cold model bias in lower troposphere and lower
stratosphere.

Ô Upper-level large-scale circulation too weak in model.
Ô Adding AIRS retrievals alleviated upper-level circulation

bias.
Ô Lower tropospheric cold bias sensitive to microphysics.

Cloud phase?
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