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MPE CDT Alpha Cohort

http://mpecdt.org/ MPE/CDT
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MPE CDT Bravo Cohort

3 more cohorts of young MPE scientists coming! Help is on the way!
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Research Project: Colin Cotter, Dan Crisan, D Holm

Colin Cotter Dan Crisan Darryl Holm Our Project
This project introduces Stochasticity into Partial Differential Equations
(SPDEs), Variational Principles (SVPs), Numerical Modelling,
Stochastic Data Analysis, and Geophysical Fluid Dynamics (SGFD).

Why? We introduce our methodology as a potential
framework for quantifying model transport error.
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Two Research Associate positions with us at Imperial

To view the advert on the Imperial College website please go to:

www.imperial.ac.uk/job-applicants,

click job search and enter NS2016040NT/41NT in ”keywords”

To view the advert on the jobs.ac.uk website please go to:

http://www.jobs.ac.uk/job/ANF380/
research-associate-position/

Deadline for applications is 18 April 2016 one week from today!
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How? to parameterise stochastic transport?

Task: Learn from stochastic assimilation of observed data (tracers)
how to produce stochastic fluid motion equations whose transport
parameterisation matches observed statistics / variability of the data.

Numerics Observations Our Approach
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Simulations of sea-surface elevation look like this
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Satellite observations look rather like a stochastic flow

Figure: All satellite observations of surface drifter trajectories since 1980
passing around Antarctica, courtesy Eric van Sebille [2015].
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How to get the fluid equations for these trajectories?

Figure: Here are all surface drifter trajectories since 1980 to have passed
between Eastern Australia & New Zealand, courtesy Eric van Sebille [2014].

Darryl D Holm Imperial College London Abstract: Who? Why? How? What?Stochastic parametrisation models for GFD ECMWF 11 April 2016 10 / 21



History: RH Kraichnan [1996, PRL] scalar turbulence

In the Kraichnan model, advection of passive scalar θ is governed by

dθ + v · ∇θ︸ ︷︷ ︸
Stoch Transport

= F + κ∆θ dt︸ ︷︷ ︸
Fluct Dissipation

, ∇ · v = 0 ,

where θ(t , r) is the scalar (temperature), F (t , r) is the external source,
v(t , r) is the advecting velocity, and κ is diffusivity [Kraichnan(1996)].

Both F (t , r) and v(t , r) are independent Gaussian random functions of
t and r, which are δ-correlated in time, e.g., v(t , r) =

∑
k ξk (r) ◦ dWk (t).

The dWk (t) are independent 1D Brownian
motions, with ∇ · ξk = 0 and with bounded
trace of the correlation tensor

∑
k ξkξ

T
k .

Typical numerical solutions show the
patchiness in θ associated with
intermittency (anomalous scaling).
Very non-Gaussian!
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History: R Mikulevicius and BL Rozovskii [MiRo(2005)]

Deriving the stochastic Euler fluid equations
Stochastic paths xt = gt (x0) solve a Lagrangian SDE with prescribed ξt

dgt (x0) = ut (gt (x0))dt + ξt (gt (x0)) ◦ dWt , with gt (x0) = xt ∈ Rn

where gt : Rn × R→ Rn is a spatially smooth map depending on time.
The corresponding Eulerian stochastic velocity decomposition is

dgtg−1
t = ut dt + ξt ◦ dWt , with g0(x0) = x0 ∈ Rn

Inserting dxt = dgt (x0) into Newton’s 2nd Law [MiRo2004] find SPDE

dut = −[ut · ∇ut +∇p − F (ut )]dt − [ ξt · ∇ut︸ ︷︷ ︸
Stochastic Transport

+∇p̃ −G(ut )] ◦ dWt

with divut = 0, divξt = 0 and “free forces” F (ut ) and G(ut ).

“Free forces” F (ut ) and G(ut ) regularise serious technical difficulties
which arise in taking the 2nd time derivative of gt in Newton’s Law.
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Stochastic constrained Hamilton variational principle
The vector field dxt = ut dt +

∑
i ξi ◦ dWi(t) = dgtg−1

t generates a
Stochastic path

xt = gtx0 = x0 +

∫ t

0
ut (xt ) dt︸ ︷︷ ︸

Lebesgue

+
∑

i

∫ t

0
ξi(xt ) ◦ dWi(t)︸ ︷︷ ︸

Stratonovich

.

We insert this VF into Hamilton’s principle, to constrain the variations:

0 = δS = δ

∫ T

0
`(ut , a0g−1

t︸ ︷︷ ︸
Advected

)dt +
〈
µ, ◦dgtg−1

t − ut dt −
∑

i

ξi ◦ dWi(t)
〉
,

where we vary u, µ and g, with δg=0 at endpoints [0,T ].

Definition: Advected quantities a ∈ {b,D . . . } satisfy at = a0g−1
t , so

da0 = 0, along dxt implies the Eulerian equation dat + Ldgt g−1
t

at = 0

0 = da0 = d(atgt ) = (dat + atdgtg−1
t )gt =: (dat + Ldgt g−1

t
at )gt
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Deriving SGFD using constrained Hamilton’s principle

The stationarity conditions for the stochastic Hamilton’s principle are

δut :
δ`

δut
= µt , δµt : dgtg−1

t = u dt +
∑

i

ξi(xt ) ◦ dWi(t) = dxt

δg : Stochastic motion equation, dµt + Ldgt g−1
t
µt =

δ`

δat
�at dt .

Here a := a0g−1 ∈ V ∗ implies δa + L
δgt g−1

t
a = 0 and let’s introduce

δgtg−1
t =: η ∈ X to define the diamond operation � : V × V ∗ → X∗ as〈

δ`

δa
, δa
〉

V
=

〈
δ`

δa
, −Lηa

〉
V

=:

〈
δ`

δa
�a, η

〉
X

.

The LHS of the motion equation arises by using d(δg) = δ(dg) to prove

δ(dgtg−1
t ) = dη − Ldgt g−1

t
η in

〈
µt , δ(dgtg−1

t )
〉
,

then integrating by parts to isolate the coefficient of the VF η = δgtg−1
t
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The stochastic Kelvin circulation theorem

The motion equation for this stochastic Hamilton’s principle

dµt + Ldgt g−1
t
µt =

δ`

δa
�a dt , with

δ`

δut
= µt & dDt + Ldgt g−1

t
Dt = 0,

implies the stochastic Kelvin circulation theorem,

d
∮

c(dgt g−1
t )

µ

D
=

∮
c(dgt g−1

t )

(
d
µ

D
+ Ldgt g−1

t

µ

D

)
︸ ︷︷ ︸

Reynolds transport theorem

=

∮
c(dgt g−1

t )

1
D
δ`

δa
�a dt

 
 
 
 
 
 

 

? Kelvin’s thm implies PV is advected by VF, dxt = dgtg−1
t (cf. QG).

? There are also momentum conservation laws à la [Mémin(2014)]
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How did we derive stochastic GFD motion equations?

How? Our strategy was to impose stochastic transport of advected
quantities [Kraichnan(1996)] as a constraint in Hamilton’s principle,

0 = δS(u,p,a) = δ

∫ (
`(u,a) dt︸ ︷︷ ︸
Physics

+
〈

p , da + Ldxt a︸ ︷︷ ︸
Tracer data

〉
V

)
.

Here `(u,a) is the unperturbed deterministic fluid Lagrangian, written
as a functional of velocity vector field u, and . . .

Ldxt is the transport operator (Lie derivative) for any advected quantity
a ∈ V by an Eulerian stochastic vector field, dxt ,

dxt = dgtg−1
t = ut dt︸︷︷︸

Drift

+
∑

k

ξk ◦ dWk (t)︸ ︷︷ ︸
Noise

.

The stochastic vector field dxt contains cylindrical Stratonovich noise
whose spatial correlations are given by ξk as in [Kraichnan(1996)].
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What did we get?

What? New stochastic GFD models for climate & weather variability.
New motion equations contain stochastic perturbations which multiply
both the solution and its spatial gradient (in a certain transport way).

Remarkably, these stochastic GFD models still preserve fundamental
properties such as Kelvin’s circulation theorem and PV conservation.

 
 
 
 
 
 

 

Examples: Stochastic QG, RSW, EB, PE, Sound-Proof eqns, etc.
[Holm(2015)]

Darryl D Holm Imperial College London Abstract: Who? Why? How? What?Stochastic parametrisation models for GFD ECMWF 11 April 2016 17 / 21



Eulerian Hamilton’s principle & relabelling symmetry!

Hamilton’s principle: δS = 0, with S =
∫
`(u,D,b)dt


A
sy

mptot
ics

Primitive Eqns

Boussinesq Eqns

Peakons
Solitons

Hydrostatic

Hodge

Decomposition

Lie-Poisson 
Hamiltonian
Formulation

Eulerian 
Conservation 
Laws

Relative 
Equilibria

Nonlinear
Stability

Lagrangian
Averaging

Closure
GLM

Reduction by Symmetry
of Hamilton’s Principle

Balance Eqns
QG, SG, L1, GM

Kelvin-Noether Thm

Conserved PV
Circulation

(WMFI)

Euler-alpha
model

Structure-Preserving
Fluid Approximations
via Hamilton’s Principle
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Conclusion: This is just the geometric framework!

1 The fundamental mathematical structure of fluids is preserved by
(1) injecting stochasticity via Hamilton’s principle, using
(2) a stochastic transport constraint for advected quantities.

2 Deterministic transport becomes stochastic transport.
3 And, stochastic transport still preserves PV (enstrophies).
4 The theory applies to all fluid models derived from Hamilton’s

principle. (The spatial correlations
∑

k ξkξ
T
k derive from data.)

5 The theory includes stochastic versions of the usual GFD
Euler-Boussinesq equations, primitive equations, etc.

6 There’s so much more to do, e.g., in analysing and applying these
new stochastic GFD equations!

7 Until recently, even the questions of existence and uniqueness for
our example of stochastic 2D QG flows were still open!

8 Recently, we have shown long time existence, uniqueness and
regularity of 3D stochastic Euler equations derived this way!
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Objectives of the new stochastic methodology

• Create new parameterisation approaches in SGFD for
mathematics of climate change and weather variability

• Quantify variability in SGFD models due to stochastic transport, by
determining the most likely paths of solutions, and their dispersion

• Quantify nonlinear model errors in GFD models by introducing
stochastic transport, then determining the most likely paths

• Quantify variability and nonlinear model errors for each member of
the new SGFD hierarchy, first for the lowest level approximation, later
for higher orders in the GFD asymptotic expansion

• Reduce dimensions by using PV preservation and the dissipative
double-bracket operators in the Itô interpretation of these SGFD
models as input for finite-horizon parameterising manifolds
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