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Stochastic physics example:
Turbulent fluctuations

Convective boundary layer scaling
« All lengths proportional to depth of layer H

« Second order moments, including transport (covariances),
proportional to buoyancy flux (w '8 ")

« e.g. (Mellor and Yamada 1982)
(0'2%y= A, tke">(w'0') d, @

Theory implies stochastic variability over a certain range of spatial scales
« Perturbations correlated over distance H
« Variability small if grid length dx large compared to H

« Magnitude increases as dx approaches H (then decreases as eddies
start to be resolved)



Physically-based Stochastic Perturbations (PSP)

Implementation in COSMO model (2.8 km grid length)
« Add random increments to model variables
« Amplitude scaled using turbulence theory

« Rescaled to account for averaging over effective horizontal resolution
« Perturbations are coherent in height and over 10 min in time
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Example of a PSP-SH field
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Impact of PSP-SH
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Two questions

1. What about other sources of small-scale variability?
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For example:
« orographic forcing
« cold pools

« surface-forced
mesoscale
circulations

* eflc.

The COMET Program

2. Wouldn't SPPT achieve the same effect?



Criteria for a stochastic parameterisation

1. Is the the scheme stable and well-behaved in the full model?
(e.g. resolution dependence)

2. |Is the variability contributed by the scheme significant?
(compared to initial condition uncertainty, etc.)

3. Is the forecast skill superior to that obtained with a deterministic
scheme? (on some score!)



Criteria for a stochastic parameterisation

1. Is the the scheme stable and well-behaved in the full model?
(e.g. resolution dependence)

2. |Is the variability contributed by the scheme significant?
(compared to initial condition uncertainty, etc.)

3. Is the forecast skill superior to that obtained with a deterministic
scheme? (on some score!)

4. Are there nontrivial interactions with the resolved flow?
(Could the same skill be obtained by postprocessing output of model
with deterministic scheme?)

5. Could the same skill be achieved with an inexpensive ad hoc
scheme?



A physically based stochastic convection scheme

Deterministic: bulk plume represents mean of convective ensemble

Stochastic: plumes with different mass flux drawn randomly from
equilibrium PDF

Deterministic Stochastic
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The Plant-Craig stochastic convection scheme

1. Closure assumption

scales a pdf of cloud radii

2. Draw clouds randomly

from this pdf
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Reflectivity examples (COSMO 7 km)
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Summary of evaluation results

1. Resolution-dependence in aquaplanet simulations
(Keane et al. 2014)
— Realistic precipitation variability? Not unrealistic
— Variability scales correctly? Yes

2. Spread in a regional ensemble prediction system
(Groenemeijer et al. 2012)
— Spread comparable to other sources? When synoptic forcing
weak
3. Skill in a regional ensemble prediction system (Kober et al. 2015)
— Forecast skill improved? For some scores and weather
regimes
4. Upscale error growth at different resolutions (Selz and Craig 2015)

— Realistic impact on large scale dynamics? Yes
— Impact scales correctly with resolution? Yes



Set-up of error growth experiment

Temperature-Perturbation,

< 4.250km ——»

N 87y

~w{ Exp: Ctl, Flt: 39 h
S 8 15 UTC 20 July 2007
— s

Sigma = 0.01K
ECMWEF forecast S e
L e - 7.000km >
COSMO 2.8km ¢ ¢
no conv. scheme +15h  +21h  +27h  +33h Control run -
19.07.2007, OUT +60h >
+60h.
+60h >
» Diagnostics will be based on differences to Ctl and +60h
averaged over all perturbation experiments >

« Weather maps will show the first perturbation experiment

(Selz and Craig 2014)



Multi-scale error growth
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1. Initial growth in regions of precipitation,
rapid saturation

2. Spreading of perturbations in space to
radius of deformation over inertial time f

3. Exponential growth of synoptic scale
perturbation

4. Further growth to planetary scales(?)
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Quantitive results on poster of Tobias Selz




Upscale perturbation growth

Difference Total Energy on
medium (dashed) and large
(solid) scales after 60 hours
perturbation growth

No parameterization (black)
— growth damped at low
resolution

Default Tiedtke scheme
(green) — too little growth

Plant-Craig stochastic (red)
— realistic growth
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Geostrophic adjustment after convection

Scalings from theory

zi 21\4 o 1. Transients propagate with gravity
j Vp wave speed

¢ = N/m = 30 ms
M 2. Half-width of balanced response is
Rossby radius
R, ~ N/f m= 300 km

3. Adjustment time
2. Changes upper-level divergence T~c/R,=f*=6hr

1. Perturb convective mass flux M

3. Changes geostrophically balanced wind 4. Balanced vortex strength

v, ~ Q_f,m/N?

f, = Coriolis parameter
N = Brunt-Vaiasala frequency

A temperature perturbation of 1 K over
a 100 km region will produce a
balanced wind perturbation of about

v =1 ms? m = vertical wavenumber
]

Q, = buoyancy source strength
over 600 km after 6 hours

(Bierdel et al. in prep.)



Law of large numbers

= =%
Lt

« M total mass flux over region

« M divided into N clouds of
mass flux m

« Overbar is ensemble average

G, = M | NY2 = M2 m2

 Perturbations accumulate like
random walk

Global temperature tendencies at ~400 hPa (60 ml)
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Concluding remarks

- Types of model error
— Errors associated with limited model complexity can be
parameterized (stochastically)
— But these are not the only errors
Empirical estimates of error may not distinguish among types

- Several criteria for the success of stochastic parameterizations

« Examples of stochastic parameterizations useful at current
resolutions
— Turbulent fluctuations in convection-permitting models
— Cumulus convection in global models
Significant impact, but not enough to account for all model error

« Impact of small-scale perturbations
— Multiscale process (not cascade)
— Variability does not average out on synoptic scale
Which aspects of model error influence forecast error?



