Simulations of the solar magnetic cycle
with EULAG-MHD

Paul Charbonneau
Département de Physique, Université de Montreal

The solar magnetic field and its cycle
Magnetic cycles with EULAG-MHD .
Why does it work ? nra
What is next... T e i
...talks by Strugarek and Cossette S ‘H‘
Université

de Montréal

-
i

ok o=

Collaborators: Piotr Smolarkiewicz, Mihai Ghizaru, Dario Passos,
Antoine Strugarek, Jean-Francois Cossette, Patrice Beaudoin,
Caroline Dubé, Nicolas Lawson, Etienne Racine, Gustavo Guerrero

All-scale geophysical flows, 1
ECMWF 10/2016



Space weather = solar magnetism

Data from SoHO/EIT LASCO, NASA+ESA
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NSWP: Numerical Space Weather Prediction
Solar magnetic field is engine
Energetics not problematic; ~10- of solar luminosity
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Line-of-sight magnetogram animation by D. Hathaway, NASA/Ames
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Solar magnetism is observed

Zonal average of surface radial magnetic component
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Magnetic polarity reversal every ~11 yr,
full magnetic cycle period ~22 yr
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Sunspots as tracers of magnetism

MDI Intensitygram:

2001/03/30 20:48

2001, cycle peak Magnetogram
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Harriot, Fabricius, Galileo, Scheiner,...
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The sunspot cycle

Heinrich
Discovered in 1843 by an amateur astronomer, after 17 years Schwabe

of nearly continuous sunspot observations.

400 Years of Sunspot Observations

Modern
MFﬂmum

Dalton
Minimum

Maunder _
Minimum ’
. . ..; il
| - ".'l”“iu]
1600 1650 1700 1750 1800

1l

2000

il |

1950

b
1900

1850

The sunspot cycle shows large cycle-to-cycle fluctuations

in amplitude and, to a lesser extent, duration, as well as

extended episodes of apparent halt (1645-1715 Maunder Min)
Rudolf Wolf
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Magnetic cycle pulse of solar activity
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Solar internal structure

Core
(Nuclear Fusion)




Atmospheric GCMs vs solar convection

Earth’s atmosphere Solar convection zone
Thin layer, constant g Thick layer, g ~r -2
Rotation+stratification Rotation+stratification
Oceans+topography Sitting on one big « ocean »
Chemistry/phase changes lonization of H and He
Heating varying in space/time Steady heating from below
Intermittent convection Ever-present convection
B dynamically unimportant B dynamically important
Ro<1,Re>>1, Ek << 1 Ro<1,Re>>>1, Ek << 1
Multiscale u Very multiscale (B ~ Rm"?)
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The MHD equations

Op

57 TV (pu)=0,
E:_lvp+g+i(VxB)xB+lV.r,
Dt p Lo P P
%-F(“,"—I)BV’UZ %[V-((erxr)VT) +¢>vf|] :
%:Vx(uxB—anB).
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Simulation design: EULAG-MHD

[ Smolarkiewicz & Charbonneau, J. Comput. Phys. 236, 608-623 (2013) ]

Simulate anelastic convection in thick,
rotating and unstably stratified fluid shell
of electrically conducting fluid, overlaying
a stably stratified fluid shell.

Recent such simulations manage to reach
Re, Rm ~102-103; a long way from the
solar/stellar parameter regime (108-10"0).

Throughout the bulk of the convecting
layers, convection is influenced by
rotation (Ro<1), leading to alignment of
convective cells parallel to the rotation axis.

Run EULAG-MHD in ILES mode
with volumetric thermal forcing
driving convection, and absorbers
at base of stable fluid layer
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Simulated magnetic cycles

Large-scale organisation of the magnetic field takes place primarily
at and immediately below the base of the convecting fluid layers.

Magnetic field amplification through a dynamo mechanism:
converting flow kinetic energy into (electro)magnetic energy.
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The « millenium simulation »
[ Passos & Charbonneau 2014, Astron. & Ap., 568, 113 ]
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Why does it work ?

All-scale geophysical flows,
ECMWF 10/2016
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Mechanisms of MHD induction

In an electrically conducting fluid, magnetic field lines
behave like vortex lines in an inviscid fluid: they are
frozen into the fluid (« flux freezing »). MHD induction
can be viewed as stretching existing magnetic fieldlines

Classical solar dynamo models based on two primary
iInductive mechanisms:

1. Shearing of large-scale poloidal magnetic field
by differential rotation;

2. Turbulent electromotive force associated with the action
of cyclonic convection on large-scale magnetic field.

All-scale geophysical flows, 17
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Mean-field electrodynamics (1)

Mean-field electrodynamics is built around the idea of
scale separation. Assume that the total flow u and magnetic

field B can be decomposed into a large-scale average and a
small-scale fluctuating component (this is not a linearization!):

u=(u)+u, B=(B)+ B'.

The procedure hinges on there existing a spatial scale over
which the small-scale components vanish upon averaging:

(w)=0, (B)=0.

and the large-scale components are deemed constant over
this intermediate averaging scale.

All-scale geophysical flows, 18
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Mean-field electrodynamics (2)

Substituting into the induction equation and averaging yields
an evolutionary equation for the mean magnetic field:
J(B)

T:VX :<u>X<B>+5—7)V><(B)]_,

Where an additional source term has appeared:
the mean electromotive force:

E=(u' x B’

Closure is achieved by expressing the emf as a tensorial
development in terms of the mean field:

Ei = «ij(Bj) + Bijr0;(Bk) + higher order derivatives ,

All-scale geophysical flows, 19
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Mean-field electrodynamics (3)

Given the spatiotemporal behavior of the magnetic field
building up in our simulation the « natural » averaging operator

IS a zonal average:
1 27
(B)(r.0.t) = 5= [ B(r,0.¢,t)d¢
21 Jo

This leads to the definition of the small-scale components as:

u' (r.0,0,t) =u(r,0,¢,t) — (u)(r,0,t) .
B,(T?H?(rba t) — B(r,@, ¢*t) - <B>(7*9*t) .

This now allows the calculation of the mean electromotive
force from the simulation output €= (u x B

All-scale geophysical flows, 20
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Extracting the alpha-tensor

Retain for now only first term in the tensorial development
for the EMF:

E; (t, r, 9) = Q4 (’I‘, 9) <BJ> (t, r, 9)

With all EMF and large-scale magnetic field components
extracted from the simulation, this can be recast as a
least-squares fitting problem for the tensorial components
of the alpha-tensor at each grid point in a meridional plane;
We tackle this fitting problem using Singular Value
Decomposition. Other extraction schemes are available
(e.g., test-field method).
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the alpha-tensor

MHD

22



Mean-field electrodynamics (4)
NO

For stratified rotating MHD turbulence that isfhomogeneous |
and| isotropic|but lacks reflectional symmetry and is only
| weakly influenced by the magnetic field, lthe alpha-tensor
NObecomes diagonal, with coefficient proportional to the fluid’s
Kinetic helicity:

Te

O = —§’7'-v ; hy = <u, -V X u,> '

Where 7. is the correlation time of the turbulent eddies.
This is a very hard quantity to extract from simulations;
here we follow astrophysical mixing-length prescription:
equating correlation time to estimate of convective turnover
time.

All-scale geophysical flows, 23
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MHD: alpha vs kinetic helicity
[ Simard et al., Adv. Sp. Res. 58, 1522 (2016) ]
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Turbulent diffusivity

Turn now to the second term in the EMF development:
2
&Y = Bijx0k(B),
In cases where u is isotropic, we have Bijk = B€ijk , and thus:
V x €3 =V x (-pV x (B)) = sV(B).

The mathematical form of this expression suggests that 3 can

be interpreted as a turbulent diffusivity of the large-scale field.

for homogeneous, isotropic turbulence with correlation time 7ec
it can be shown that

8 = %'rc(uz) , [1n2s_1]

This result is expected to hold also in mildly anisotropic, mildly
inhomogeneous turbulence. In general, 8 > n

All-scale geophysical flows,
ECMWF 10/2016
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MHD: beta vs turbulent intensity
[ Simard et al., Adv. Sp. Res. 58, 1522 (2016)]
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Low coherence time turbulence ?

ax = _%m'.v xu), (/45)
B = %((u')2) | (/5.5)

Simulations and analytical (SOCA) theory match, but with
an amplitude error by a factor of ~5; can be « explained »
If coherence time of turbulent eddies is smaller than
turnover time by a comparable factor.

Conjecture: the scale-dependent implicit dissipation
iIntroduced by MPDATA leads to low correlation time
turbulence in the physical regime of our solar simulations.
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Where do we go next ?

Understand what sets the cycle period(s)
[ Talk by A. Strugarek ]

Understand physical underpinnings of the cyclic
modulation of the convective energy flux

[ Talk by J.-F. Cossette |

Comparative benchmark with ASH simulations
[ Talk by A. Strugarek ]

Understand role of tachocline instabilities in long term
behavior of simulations, and possible role in triggering
Maunder-Minimum-like period of strongly reduced activity

[ Lawson et al., Astrophys. J., 813, 95 (2015) |
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