Simulations of the solar magnetic cycle with EULAG-MHD
Paul Charbonneau
Département de Physique, Université de Montréal

1. The solar magnetic field and its cycle
2. Magnetic cycles with EULAG-MHD
3. Why does it work?
4. What is next…
5. …talks by Strugarek and Cossette

Collaborators: Piotr Smolarkiewicz, Mihai Ghizaru, Dario Passos, Antoine Strugarek, Jean-François Cossette, Patrice Beaudoin, Caroline Dubé, Nicolas Lawson, Étienne Racine, Gustavo Guerrero
Space weather = solar magnetism

Data from SoHO/EIT LASCO, NASA+ESA

NSWP: Numerical Space Weather Prediction
Solar magnetic field is engine
Energetics not problematic; \(\sim 10^{-5} \) of solar luminosity
Solar magnetism is observed

Line-of-sight magnetogram animation by D. Hathaway, NASA/Ames
Solar magnetism is observed

Zonal average of surface radial magnetic component

Magnetic polarity reversal every \(~11\) yr, full magnetic cycle period \(~22\) yr
Sunspots as tracers of magnetism

2001, cycle peak

Data: SoHO/MDI (NASA+ESA)

Magnetogram

All-scale geophysical flows, ECMWF 10/2016
Harriot, Fabricius, Galileo, Scheiner,…
The sunspot cycle

Discovered in 1843 by an amateur astronomer, after 17 years of nearly continuous sunspot observations.

The sunspot cycle shows large cycle-to-cycle fluctuations in amplitude and, to a lesser extent, duration, as well as extended episodes of apparent halt (1645-1715 Maunder Min).
Magnetic cycle = pulse of solar activity

- Magnetic cycle: ~10-100%
- ~0.1%
Solar internal structure
<table>
<thead>
<tr>
<th>Earth’s atmosphere</th>
<th>Solar convection zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin layer, constant g</td>
<td>Thick layer, $g \sim r^{-2}$</td>
</tr>
<tr>
<td>Rotation+stratification</td>
<td>Rotation+stratification</td>
</tr>
<tr>
<td>Oceans+topography</td>
<td>Sitting on one big « ocean »</td>
</tr>
<tr>
<td>Chemistry/phase changes</td>
<td>Ionization of H and He</td>
</tr>
<tr>
<td>Heating varying in space/time</td>
<td>Steady heating from below</td>
</tr>
<tr>
<td>Intermittent convection</td>
<td>Ever-present convection</td>
</tr>
<tr>
<td>B dynamically unimportant</td>
<td>B dynamically important</td>
</tr>
<tr>
<td>$\text{Ro} < 1$, $\text{Re} \gg 1$, $\text{Ek} \ll 1$</td>
<td>$\text{Ro} < 1$, $\text{Re} \gg \gg 1$, $\text{Ek} \ll 1$</td>
</tr>
<tr>
<td>Multiscale u</td>
<td>Very multiscale ($B \sim R_{m}^{-1/2}$)</td>
</tr>
</tbody>
</table>
The MHD equations

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0, \]

\[\frac{D \mathbf{u}}{Dt} = -\frac{1}{\rho} \nabla p + \mathbf{g} + \frac{1}{\mu_0 \rho} (\nabla \times \mathbf{B}) \times \mathbf{B} + \frac{1}{\rho} \nabla \cdot \tau, \]

\[\frac{De}{Dt} + (\gamma - 1) e \nabla \cdot \mathbf{u} = \frac{1}{\rho} \left[\nabla \cdot \left((\chi + \chi_r) \nabla T \right) + \phi_v + \phi_B \right], \]

\[\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B} - \eta \nabla \times \mathbf{B}). \]
Simulation design: EULAG-MHD

Simulate anelastic convection in thick, **rotating** and unstably **stratified** fluid shell of electrically conducting fluid, overlaying a stably stratified fluid shell.

Recent such simulations manage to reach Re, Rm ~10^2-10^3; a long way from the solar/stellar parameter regime (10^8-10^10).

Throughout the bulk of the convecting layers, convection is influenced by rotation (Ro<1), leading to alignment of convective cells parallel to the rotation axis.

Run EULAG-MHD in ILES mode with **volumetric thermal forcing** driving convection, and absorbers at base of stable fluid layer.
Simulated magnetic cycles

Large-scale organisation of the magnetic field takes place primarily at and immediately below the base of the convecting fluid layers.

Magnetic field amplification through a **dynamo mechanism**: converting flow kinetic energy into (electro)magnetic energy.
Zonally-averaged B_{ϕ} at $r/R = 0.718$

Zonally-averaged B_{ϕ} at -58° latitude
The « millenium simulation »

Define a SSN proxy, measure cycle characteristics (period, amplitude…) and compare to observational record.
Why does it work?
Mechanisms of MHD induction

In an electrically conducting fluid, magnetic field lines behave like vortex lines in an inviscid fluid: they are frozen into the fluid (« flux freezing »). MHD induction can be viewed as stretching existing magnetic fieldlines.

Classical solar dynamo models based on two primary inductive mechanisms:

1. Shearing of large-scale poloidal magnetic field by differential rotation;

2. Turbulent electromotive force associated with the action of cyclonic convection on large-scale magnetic field.
Mean-field electrodynamics (1)

Mean-field electrodynamics is built around the idea of **scale separation**. Assume that the total flow \(u \) and magnetic field \(B \) can be decomposed into a large-scale average and a small-scale fluctuating component (this is **not** a linearization!):

\[
\begin{align*}
 u &= \langle u \rangle + u' , \\
 B &= \langle B \rangle + B' ,
\end{align*}
\]

The procedure hinges on there existing a spatial scale over which the small-scale components vanish upon averaging:

\[
\langle u' \rangle = 0 , \quad \langle B' \rangle = 0 .
\]

and the large-scale components are deemed constant over this intermediate averaging scale.
Mean-field electrodynamics (2)

Substituting into the induction equation and averaging yields an evolutionary equation for the mean magnetic field:

\[\frac{\partial \langle B \rangle}{\partial t} = \nabla \times \left[\langle u \rangle \times \langle B \rangle + \mathcal{E} - \eta \nabla \times \langle B \rangle \right], \]

Where an additional source term has appeared: the mean electromotive force:

\[\mathcal{E} = \langle u' \times B' \rangle \]

Closure is achieved by expressing the emf as a tensorial development in terms of the mean field:

\[\mathcal{E}_i = \alpha_{ij} \langle B_j \rangle + \beta_{ijk} \partial_j \langle B_k \rangle + \text{higher order derivatives}, \]
Mean-field electrodynamics (3)

Given the spatiotemporal behavior of the magnetic field building up in our simulation the « natural » averaging operator is a zonal average:

$$\langle B \rangle (r, \theta, t) = \frac{1}{2\pi} \int_0^{2\pi} B(r, \theta, \phi, t) d\phi$$

This leads to the definition of the small-scale components as:

$$u'(r, \theta, \phi, t) = u(r, \theta, \phi, t) - \langle u \rangle (r, \theta, t) ,$$

$$B'(r, \theta, \phi, t) = B(r, \theta, \phi, t) - \langle B \rangle (r, \theta, t) .$$

This now allows the calculation of the mean electromotive force from the simulation output:

$$\mathcal{E} = \langle u' \times B' \rangle$$
Extracting the alpha-tensor

Retain for now only first term in the tensorial development for the EMF:

\[\mathcal{E}_i(t, r, \theta) = \alpha_{ij}(r, \theta) \langle B_j \rangle(t, r, \theta) \]

With all EMF and large-scale magnetic field components extracted from the simulation, this can be recast as a least-squares fitting problem for the tensorial components of the alpha-tensor at each grid point in a meridional plane; We tackle this fitting problem using Singular Value Decomposition. Other extraction schemes are available (e.g., test-field method).
MHD: the alpha-tensor
Mean-field electrodynamics (4)

For stratified rotating MHD turbulence that is \textit{homogeneous} and isotropic but lacks reflectional symmetry and is only \textit{weakly influenced by the magnetic field}, the alpha-tensor becomes diagonal, with coefficient proportional to the fluid’s kinetic helicity:

\[\alpha = -\frac{\tau_c}{3} h_v, \quad h_v = \langle u' \cdot \nabla \times u' \rangle. \]

Where τ_c is the correlation time of the turbulent eddies. This is a very hard quantity to extract from simulations; here we follow astrophysical mixing-length prescription: equating correlation time to estimate of convective turnover time.
MHD: alpha vs kinetic helicity
Turbulent diffusivity

Turn now to the second term in the EMF development:

\[\mathcal{E}^{(2)}_i = \beta_{ijk} \partial_k \langle B \rangle_j \]

In cases where \(\mathbf{u} \) is isotropic, we have \(\beta_{ijk} = \beta \epsilon_{ijk} \), and thus:

\[\nabla \times \mathcal{E}^{(2)} = \nabla \times (-\beta \nabla \times \langle B \rangle) = \beta \nabla^2 \langle B \rangle. \]

The mathematical form of this expression suggests that \(\beta \) can be interpreted as a **turbulent diffusivity** of the large-scale field. For homogeneous, isotropic turbulence with correlation time \(\tau_c \), it can be shown that

\[\beta = \frac{1}{3} \tau_c \langle \mathbf{u}^2 \rangle, \quad \left[m^2 s^{-1} \right] \]

This result is expected to hold also in mildly anisotropic, mildly inhomogeneous turbulence. In general, \(\beta \gg \eta \).
MHD: beta vs turbulent intensity
Low coherence time turbulence?

\[
\alpha^* = -\frac{\tau_c}{3} \langle \mathbf{u}' \cdot \nabla \times \mathbf{u}' \rangle , \quad (/ 4.5)
\]

\[
\beta^* = \frac{\tau_c}{3} \langle (\mathbf{u}')^2 \rangle , \quad (/ 5.5)
\]

Simulations and analytical (SOCA) theory match, but with an amplitude error by a factor of ~5; can be « explained » if coherence time of turbulent eddies is smaller than turnover time by a comparable factor.

Conjecture: the scale-dependent implicit dissipation introduced by MPDATA leads to low correlation time turbulence in the physical regime of our solar simulations.
Where do we go next?

Understand what sets the cycle period(s)

[Talk by A. Strugarek]

Understand physical underpinnings of the cyclic modulation of the convective energy flux

[Talk by J.-F. Cossette]

Comparative benchmark with ASH simulations

[Talk by A. Strugarek]

Understand role of tachocline instabilities in long term behavior of simulations, and possible role in triggering Maunder-Minimum-like period of strongly reduced activity

Collaborators: Piotr Smolarkiewicz, Dario Passos, Antoine Strugarek, Jean-François Cossette, Patrice Beaudoin, Corinne Simard, Nicolas Lawson, Amélie Bouchat, Mihai Ghizaru, Caroline Dubé.