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The future of Earth System models on
supercomputers

» Individual processors will not be faster.

» We will run Earth System models on a huge number of
processing units in parallel (up to 108 already today).

» Scalability and performance will influence decisions in model
development (but we do not always know what'’s best for a
specific hardware).

» Power consumption will be a big problem for future high
performance computing.

» Hardware errors and hardware faults will happen frequently.

Peter Diiben
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A reduction in numerical precision using inexact
hardware

» Double precision is used in almost all weather and climate
models.

» Inexact hardware trades precision against computing cost and
allows a reduction of power consumption, an increase in
performance, or a reduction in data storage.

» If inexact hardware could be used in weather and climate
models, this would allow simulations at higher resolution and
possibly more accurate forecasts.
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A reduction in numerical precision using inexact
hardware
» Double precision is used in almost all weather and climate
models.

» Inexact hardware trades precision against computing cost and
allows a reduction of power consumption, an increase in
performance, or a reduction in data storage.

» If inexact hardware could be used in weather and climate
models, this would allow simulations at higher resolution and
possibly more accurate forecasts.

How can we trade precision against computing cost?

» Easy: double — single — half.
» Easy: Reduction of precision in data storage.
» Hard work: Field Programmable Gate Arrays (FPGAs).

» Future perspective: Flexible precision hardware and hardware
with frequent hardware faults.
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Outline

1. Five studies to convince you that precision can be reduced
in Earth System modelling.

2. Five examples that adjust numerical precision to model error and
model uncertainty.
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Study 1: IFS forecast model in single precision
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» Filip Vana has investigated single precision at ECMWEF.

» Ensemble forecasts and long-term simulations in double and
single precision at T399 resolution are almost identical.

» ~40% speed-up.
» More tests are needed.

Diben et al. MWR 2015, Vana et al. submitted to MWR
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Study 2: Lorenz '96 on Field Programmable Gate
Arrays (FPGASs)

» We implemented the Lorenz ’96 model on FPGAs in cooperation
with the group of Wayne Luk at Imperial College.

» We scale the size of the Lorenz model to the size of a high
performance computing application with more than 100 million
degrees-of-freedom.

» Simulations with reduced precision (17 bits for X; 14 bits for Y)
are two times faster compared to simulations in single precision.

» The impact of the precision reduction is comparable to a
parameter change of 1%.

tben et al. JAMES 2015, Russel et al. FCCM 2015.
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Study 3: Reduced precision in an atmosphere model

» We calculate weather forecasts with a spectral dynamical core
(full dynamics - no physics).

» Floating point precision is reduced to 20 bits (instead of 64)
using an emulator in almost the entire model.

» We estimate savings for inexact hardware in cooperation with
computer scientists (the groups of Krishna Palem Rice
University, Christian Enz EPFL and John Augustine [ITM).

Peter Diiben
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Study 4: Shallow water model with hardware faults

» We introduce a coarse backup grid to save prognostic fields.

» We test whether the fields on the backup grids are physically
meaningful and restore erroneous values on the model grid,
using the backup grid.

» We emulate soft errors in floating point operations and the loss
of information in large areas of the model domain.

» The backup system generates 13% overheads in compute time.

tiben and Dawson in prep. for JAMES

Peter Diiben



Study 4: Shallow water model with hardware faults
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» We introduce a coarse backup grid to save prognostic fields.

» We test whether the fields on the backup grids are physically
meaningful and restore erroneous values on the model grid,
using the backup grid.

» We emulate soft errors in floating point operations and the loss
of information in large areas of the model domain.

» The backup system generates 13% overheads in compute time.

ben and Dawson in prep. for JAMES
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Study 5: Data assimilation with reduced precision
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» We study data assimilation with an Ensemble Kalman filter at
reduced numerical precision (Samuel Hatfield).

» The Figure shows the assimilation error for a Lorenz’95 model.

» It is better to use a large ensemble at low precision than a small
ensemble at high precision at the same computational cost.

4DVAR may be very sensitive to a reduction in precision.

Peter Diiben



Outline

1. Five studies to convince you that precision can be reduced in
Earth System modelling.

2. Five examples that adjust numerical precision to model
error and model uncertainty.
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Example 1: A scale-selective approach
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» Spectral models allow to treat different scales at different levels
of precision.

» We can push the small scales harder than the large scales.

» This is intuitive due to the high inherent uncertainty in small
scale dynamics (parametrisation, viscosity, data-assimilation,...).

» The smallest scales are the most expensive once.

Peter Diiben



Example 1: A scale-selective approach

forecast error
geopotential height [m]
w
o
T

20 Control 4
WN 21 p=0.1 ——
10 WN 31 p=0.1 ------- i
WN 21 6 bits
0  WN 31 6 bitg -----1 -
0 2 4 6 8 10 12 14
time in days

Scale separation in a spectral dynamical core.
Diben, MacNamara and Palmer JCP 2014; Diiben and Palmer MWR 2014




Example 1: A scale-selective approach

v

Using scale dependent precision: High precision on the coarse
grid, low precision on the fine grid.

v

Coarse grid: Stability

v

Fine grid: Variability.
» The approach is motivated by two-way nesting.

v

Tests with a C-grid shallow water model.




Example 1: A scale-selective approach
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Height field of an isolated mountain test after 200,000 timesteps.
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Example 2: Stochastic parametrisation schemes and
rounding errors

» Rounding errors will generate a forcing that is added to the
differential equations that is uncorrelated in space and time.

» We can influence the forcing by changing either the level of
precision, or the model setup (time stepping scheme etc.).

» Stochastic parametrisation schemes use random forcing with
specific mean and variability for physical reasons.

Peter Diiben
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Example 2: Stochastic parametrisation schemes and
rounding errors
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Example 3: A reduction of precision with lead time
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Lorenz 95 on FPGAs: Prec. 1 is using 6 bits in the exponent and 11
bits in the significand.
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Example 3: A reduction of precision with lead time

Forecast errors for X
o = N W A OO N O

Lorenz 95 on FPGAs: Prec. 1 is using 6 bits in the exponent and 11

bits in the significand.

Diben et al. JAMES 2015
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Example 3: A reduction of precision with lead time

Forecast error (fe) and number of significant bits (s)
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timein model time units
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» We identify the number of bits that are not influenced by
rounding errors using the verificarlo tool and emulated precision
(Fenwick Cooper and Christophe Denis).

» The expected reduction of bits is consistent with the timescale of
forecast errors for the Lorenz’95 model.

» The number of significant bits reduces linearly with time.

Peter Db
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Example 4: A precision analysis to adjust model
complexity

» Superparametrisation is running a two-dimensional cloud
resolving model in each grid-cell of a global simulation.

» Superparametrisation improves tropical predictions (MJO, Indian
monsoon,...) but it is very expensive.

» We use a superparametrised single column model of IFS (many
thanks to Filip and Marat).

» We integrate the cloud resolving model using emulated inexact
hardware.

Figure source: http://www.ucar.edu/communications/quarterly/summer06/cloudcenter.jsp

Peter Diiben



Example 4: A precision analysis to adjust model

complexity
[ Parameter [ Precision | Double precision | Reduced precision | Error |
cp=specific heat of air 7 1004.0 1004.0 0.000%
ggr=gravitational acceleration 7 9.81 9.8125 0.025%
Icond=latent heat of condensation 14 2.5104e+06 2.510464e+06 0.003%
Ifus=latent heat of fusion 7 3.336e+05 3.33824e+05 0.067%
Isub=latent heat of sublimation 12 2.8440e+06 2.844160e+06 0.006%
rv=gas constant water vapour 8 461.0 461.0 0.000%
diffelg=diffusivity water vapour 7 2.21e-05 2.2053719e-05 0.209%
therco=thermal conductivity of air 8 2.40e-02 2.3986816e-02 0.055%
muelg=dynamic viscosity of air 3 1.717e-05 1.7166138E-5 0.022%

» We automate the search for reduced precision to find the optimal
level of precision for individual parameters.

» We compare model errors due to reduced precision with
ensemble spread.

» Precision can be reduced significantly. However, estimates for
savings are difficult.




Example 4: A precision analysis to adjust model

complexity
[ Parameter [ Precision | Double precision | Reduced precision | Error |
cp=specific heat of air 7 1004.0 1004.0 0.000%
ggr=gravitational acceleration 7 9.81 9.8125 0.025%
Icond=latent heat of condensation 14 2.5104e+06 2.510464e+06 0.003%
Ifus=latent heat of fusion 7 3.336e+05 3.33824e+05 0.067%
Isub=latent heat of sublimation 12 2.8440e+06 2.844160e+06 0.006%
rv=gas constant water vapour 8 461.0 461.0 0.000%
diffelg=diffusivity water vapour 7 2.21e-05 2.2053719e-05 0.209%
therco=thermal conductivity of air 8 2.40e-02 2.3986816e-02 0.055%
muelg=dynamic viscosity of air 3 1.717e-05 1.7166138E-5 0.022%

» We automate the search for reduced precision to find the optimal
level of precision for individual parameters.

» We compare model errors due to reduced precision with
ensemble spread.

» Precision can be reduced significantly. However, estimates for
savings are difficult.




Example 4: A precision analysis to adjust model
complexity
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» We find that precision can be reduced significantly in the
turbulent kinetic energy scheme and for the high orders of the
water vapour saturation curve.

» We remove those parts from the model.
» The new model setup is approximately 12% faster.

Peter Diiben
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Example 5: Information content in bit representation

Bit-info with binwidth = measurernent uncertainty = 0.1 %
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» The calculation of information entropy allows to measure
information content of individual bits (Stephen Jeffress).

» The Figure above shows the information content of bits for
prognostic variables of a one-scaled Lorenz’95 model.

» A study of information entropy could help to identify the optimal
way to store observation and model data.

Peter Diiben



Conclusions
The results suggest that...

>

double precision as default is overcautious. A reduction in
precision is promising huge savings.

savings can be reinvested to allow higher resolution or more
ensemble members to improve forecasts.

a reduction in precision is much more efficient when compared
to a reduction in resolution to save power.

model simulations can be secured against bit flips and hardware
faults with only limited overheads.

precision should be reduced with spatial scale and forecast lead
time.

a precision analysis helps to adjust stochastic parametrisation
schemes and vice versa.

a precision analysis can help to improve models and to adjust
model complexity.

Peter Diiben



Implications for ECMWF

» Data compression (information entropy and a reduction in
precision with forecast lead-time).

» Study the parallel processing of different model components and
accept a reduction in precision (e.g., ocean/atmosphere/ice or
dynamics/physics).

» Single precision and half precision (Pascal GPUs by NVIDIA and
Intel Knights Mill).

» Study multi-grid approaches.

» Increase local computation, reduce communication.

Peter Diiben



How to approach full-blown GCMs?
An emulator for reduced precision

Method:

We define a new reduced-precision type that behaves like a floating
point number, but reduces the precision when it is operated on, this
allows the emulation of reduced precision and specific setups of
inexact hardware in large models (such as IFS) with no need for
extensive changes of model code.

Example:

Emulated 5 bit significand with reduced precision “+”
Standard Fortran: Reduced precision declarations:
REAL :rabc TYPE(reduced_precision) :: a,b,c
a=1.442221 a=1.442221
b =2.136601 b =2.136601
c=a+b c=a+b
— €=3.578822 — ¢=3.562500

Dawson and Diiben in prep. for GMD

Peter Diiben
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Example 1: A scale-selective approach

AU+ u - (V) + fk x U+ gVh = ay (Ues — u)
dth+V - (Hu) = ap (he/r — h)

u two dimensional velocity, f is the Coriolis parameter, k vertical unit vector, g gravitational acceleration, h surface

elevation, H height of the fluid column, « nesting parameter

1. We use bilinear mapping to calculate the relaxation term for the
differential equations on both grids.

2. The code gets messy for a 2d periodic staggered grid, but it is
straight forward to do it.

3. Computational overhead due to the coarse grid is very small and
we use 3AX for the coarse grid.

Peter Diiben



Why should we think about an adjustment of
precision?

This is what we want to represent in an atmosphere model.

Peter Diiben



Why should we think about an adjustment of

precision?
This is how we represent the atmosphere.

Steve Greaves
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Why should we think about an adjustment of

precision?
Can we represent the atmosphere like this?

1 - 5




A precision analysis to improve models

If we perform a detailed precision analysis for weather and climate
models...

» ...we can secure high precision simulations against rounding
errors and improve portability.

v

...we can identify and remove model parts that do not have a
strong influence on model dynamics.

» ...we can use the strength of acceptable rounding errors to
inform stochastic parametrisation schemes.

» ...we can use rounding errors to generate ensemble spread.

» ...we can use the optimal level of precision to quantify model
uncertainty.

Peter Diiben



Example 2: Stochastic parametrisation schemes and
rounding errors
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If we add a tiny amount of random noise to the initial conditions,
rounding errors will be uncorrelated in space and time.

Peter Dib
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Example 2: Parameter uncertainty in
superparametrisation

[ Parameter [ Precision | 64bits | Reducedprec. [ Error |
specific heat 1004.0 1004.0 0%
grav. acceleration 9.81 9.75 0.6%

2.5104e+06 2.490368e+06 0.8%
3.336e+05 0.262144e+05 21%
2.8440e+06 2.883584e+06 1.4%

latent heat of condensation
latent heat of fusion
latent heat of sublimation

gas constant 461.0 512.0 1%
diffusivity water vapour 2.21e-05 2.2888184e-05 3.6%
thermal conductivity 2.40e-02 2.34375e-02 2.3%

1.717e-05 1.5258789E-5 1%

o=, 0owo AN

dynamic viscosity




Example 2: Parameter uncertainty in
superparametrisation

[ Parameter [ Precision | 64bits | Reducedprec. [ Error |
specific heat 7 1004.0 1004.0 0%
grav. acceleration 5 9.81 9.75 0.6%

2.5104e+06 2.490368e+06 0.8%
3.336e+05 0.262144e+05 21%
2.8440e+06 2.883584e+06 1.4%

latent heat of condensation
latent heat of fusion
latent heat of sublimation

gas constant 461.0 512.0 1%
diffusivity water vapour 2.21e-05 2.2888184e-05 3.6%
thermal conductivity 2.40e-02 2.34375e-02 2.3%

dynamic viscosity 1.717e-05 1.5258789E-5 1%




Two examples for approaches to inexact hardware
Double precision
Floating point numbers are represented with 64 bits and 15 decimal
places. 1 sign bit, 11 bits in the exponent and 52 bits in the
significand.

sigh exponent significand

Peter Diiben
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Pruning
Parts of the CPU that are hardly used or do not have a strong
influence on significant bits are removed. Errors are limited to the
significand of floating point numbers.
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Double precision
Floating point numbers are represented with 64 bits and 15 decimal
places. 1 sign bit, 11 bits in the exponent and 52 bits in the
significand.
sigh exponent significand
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Field Programmable Gate Array (FPGA)

FPGAs are integrated circuits that can be configured by the user.
Numerical precision can be customised to the application.

sign exponent significand
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Lorenz 96 on an FPGA

» We implemented the Lorenz '96 model on an FPGA in
cooperation with Xinyu Niu, Francis Russel and Wayne Luk from
Imperial College.

» We scale the size of the Lorenz model to the size of a high
performance application (up to more than 100 million
degrees-of-freedom).

» We compare results with reduced precision against results with
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Lorenz 96 on an FPGA
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Lorenz ’96 on an FPGA: Speed and Power

| Hardware | Speed | Energy efficiency |
CPU, 12 cores, single precision 1.0 1.0
CPU, 12 cores, double precision 0.5 -
FPGA, single precision 2.8 10.4
FPGA, 17 bits for X, 14 bits for Y 6.9 23.9
FPGA, 21 bits for X, 19 bits for Y 54 18.9
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| Hardware | Speed | Energy efficiency |
CPU, 12 cores, single precision 1.0 1.0
CPU, 12 cores, double precision 0.5 -
FPGA, single precision 2.8 10.4
FPGA, 17 bits for X, 14 bits for Y 6.9 23.9
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A short introduction to bit representation

» The computer represents an integer number as a string of 32
bits. Each bit represents a power of two:

31
102090 = 0-2°+1.2'+0-224+1.2340-244+0.254+1.25... = Z b;2!
i=0
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» Areal number ais represented as a 64 bit floating point number:
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sign exponent significand
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Information content and reduced precision
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“Coarse-graining” in large models
Preliminary results with the emulator in the land surface scheme from
Andrew Dawson.

Soil Temperature after 10 Days
1 160t Mants a1 rul

" ¥
247
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“Coarse-graining” in large models
Preliminary results with the emulator in the cloud resolving model of
the superparametrised IFS model from Aneesh Subramanian.

Advection - 12 Bit
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“Fine-graining” in large models
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How to identify the right level of precision that should
be used?

However:
» Each quantity needs to be checked against it's own reference.

» Simulations are too sensitive after a couple of timesteps.
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My recipe to reduce precision in IFS

1. Introduce the emulator into the model.

2. Use short term simulations of 50 timesteps to “fine-grain”
precision levels.

3. Compare each “prognostic quantity” of a subroutine against a
high precision reference after 50 timesteps.

4. Find an appropriate quality control and automatise the search.
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Tests with a C-grid shallow-water model

ou+u-(Vu)+rfkxu+gVn=vAu+r
317]+V'(hl|):0

u: horizontal velocity n: surface elevation

f: Coriolis parameter v: eddy viscosity

k: vertical unit vector T: forcing term

g: gravitational acceleration h: height of the fluid column
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Tests with a C-grid shallow-water model
We run a Munk-double-gyre ocean testcase on a 128X128 grid with
500 meter depth.

He|ghteta .
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2500—- -
2000; .
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1000—: _
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Tests with a C-grid shallow-water model

1. Our quality control: The mean difference between the double
precision and the reduced precision simulation should be
smaller than 0.1% of the standard deviation of u, v, and n.

2. We give each floating point field of the timestepping loop (29 in
total) an individual level of precision (e.g. At, h, g,...).

3. We run a set of runs for which we reduce precision only for a
specific variable. We start with 2 bits precision in the significand
for the specific variable and increase this level until the run fulfils
the quality control.

4. The results on the following slides are very preliminary!
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Tests with a C-grid shallow-water model

Parameter | number of bits in the significand |
12 . s
u 12 We end up with precision levels that

v 12 should be used for the significand of

Tx 2

Ty 2 floating point numbers.

Precision can be reduced significantly!

zeta
vec

g.

pi

f0

beta

v

ah

x0

yo

dx

dy

dt

slip
sigmax
sigmay

We obtain information on the information
content.
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Tests with a C-grid shallow-water model

Parameter | number of bits in the significand |

7 3 We end up with precision levels that
v 2 should be used for the significand of
b 2 floating point numbers.

du 2

dv 2

ab 2

ho 2 .. . g

fu 4 Precision can be reduced significantly!
fv 4

b 7

zeta 2

vec 2

gi > We obtain information on the information
fo 2

beta 5 content.

v 2

ah 2

x0 2

¥0 2 . .
g; 8 Expert knowledge is needed to obtain
ot 2 stable model simulations (increase
S 2 precision for At and ab).

sigmay 2
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Tests with a C-grid shallow-water model

eta reduced precision eta double precision
v IR
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Height field after 28 days of simulations.
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How to approach full-blown GCMs?

How can we port a model to inexact hardware (whatever this may
look like)?

» GCMs already face the challenge to be portable and scalable on
different hardware architectures (e.g. GPU/CPU systems).

» If you want maximal performance, a rewrite of the most
expensive parts of the model seems to be necessary already for
exact hardware (flops/bits, parallelisations, GPUs,...).

» The use of a domain specific language will probably be the key!

» A study of inexact hardware would be much easier in a model
which is based on a domain specific language.
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Future research: Multigrid/nested methods

Stephen Jeffress is looking into the use of inexact hardware in a
C-grid shallow water model.

» A scale dependent allocation of computing resources on a
hybrid CPU - FPGA architecture. High precision on the coarse
grid, low precision on the fine grid.

» Coarse grid: Stability; Fine grid: Variability.

» Future studies could be based on two-way nesting!?
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Future research: Super-parametrisation

Aneesh Subramanian is looking into super-parametrisation.

1. We test a super-parametrisation scheme of atmospheric
convection in the IFS of ECMWF which is similar to the scheme
in the NCAR climate model.

2. Using super-parametrisation increases computational cost by a
factor 60!

3. We calculate the cloud resolving model with emulated inexact
hardware.
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Reduced precision in an atmosphere model

» In collaboration with Rice University (USA) and EPFL
(Switzerland) we derived hardware setups of the floating point
unit, memory and cache that show comparable error pattern

» Inexact floating point units are developed and synthesized with
the same delay and area constraints as exact hardware

» DRAMsim is used to obtain energy estimates of the main
memory

» We assume that the cache is built out of SRAM cells. Here,
energy consumption scales linearly with the width of the word

» We do not consider instruction code memory access
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Lorenz ’96 on an FPGA: Reduce precision with time

SiNgle PreciSion s

Prec. 1 after 0 MTU —— 4
. Prec|.1 aitelr 0.5 I\/IITU S
0 0.5 1 1.5 2 25 3 3.5 4

time in MTUs

Forecast errors for X
o - N W A > ~N [{a}
T

Prec 1 is using 6 bits in the exponents and 11 bits in the significand.
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Lorenz ’96 on an FPGA: Reduce precision with time

Forecast errors for X

Single Precision s
Prec. 1 after 0 MTU —— 4
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Prec 1 is using 6 bits in the exponents and 11 bits in the significand.
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