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Motivation
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@ “Unusual” stratosphere above typhoon Neoguri at t+96hrs forecast
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Advection equation and Departure Points
SL method solution to advection equation:

Dg(r, t) D 0

Dt 0, Dt = ot +V.V, (u, v, w)
br_ V(r,t) SL trajectory eqn
Dt ) J Yy €q

o(ra, t + At) = ¢(rp, t)

ra : “arrival points” (given gridpoints)
rp : “departure points” d.p. (computed every timestep)

DP estimation crucial for accuracy of numerical solution I
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DP iterations in IFS

Computing DP with a mid-point scheme requires wind field at SL
trajectory mid-points (252, £11+1/2)

IFS SETTLS extrapolation:

1
5 V(ra, ) +2V(rp, ) = V(rp, t — At)] » v(w, £1/2)

Iterate recurrence relation to compute DP:

rD[l] = rap— AtV(rA, t)
M - Bty 2V(r,t) — V(r,t — A
D = ra 5 (rAa t) + [ (r7 t) (r7 t t)] ’r:rD[Vfl]
forv=23,...,Unax
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DP iteration convergence

From Smolarkiewicz & Pudykiewicz MWR 1992 analysis:

o — o™ < £ Hirp — ||, v =2,3,..., Umax

or

o — rp | < £]rpH —rp=A|, v =23, v

oV
L= AtHEH Lipschitz number
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DP iteration convergence

From Smolarkiewicz & Pudykiewicz MWR 1992 analysis:

o — o™ < £ Hirp — ||, v =2,3,..., Umax

or

o — rp | < £]rpH —rp=A|, v =23, v

oV
L= AtHEH Lipschitz number

o L < 1 is a sufficient condition for convergence

@ L is an upper bound of the rate of convergence
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DP iteration convergence

From Smolarkiewicz & Pudykiewicz MWR 1992 analysis:

o — o™ < £ Hirp — ||, v =2,3,..., Umax

or

o — rp | < £]rpH —rp=A|, v =23, v

oV
L= AtHEH Lipschitz number

o L < 1 is a sufficient condition for convergence

@ L is an upper bound of the rate of convergence

@ How large is £ in a forecast and how fast DP converge?
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Lipschitz numbers in 16km res IFS forecasts

(a) Wind speed (winter case) (b) Lipschitz number (winter case)
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(a), (b): 00UTC 10 January 2014, t+48hrs fc at 500hPa. (c), (d): 00UTC 5 July
2014 t+96 hrs fc at 850hPa
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Diagnostic for DP convergence

Define scaled DP displacement:

ST
N N
5xgj],.k =, v=23,...,Vnax
b d’-
where
vl n[[l)’] , vertical . .
Do = ] dix = resolution scaling factor

14 . Y
QPP ks horizontal

gb[glik : angle between ik GP, its DP and the centre of the earth, o : Earth
radius, Any thickness of k-layer, Ax: approximate gridlength.
Should be a converging sequence:

Oxph > oxbh > - > oxmel 5 0
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Winter case (16km res): t+48hrs 500hPa level 5ng,?k

(c) iter 4 - iter 3 (d) iter 5 - iter 4
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Neoguri: t+48hrs 850hPa level

(c) iter 4 - iter 3 (d) iter 5 - iter 4

Slide 8/16 Computational methods for all scale geophysical flows October 2016 — M.Diamantakis WECMWF




Neoguri: t+48hrs 850hPa At/2 = 300s

Tl b 0
(c) iter 4 - iter 3 (d) iter 5 - iter 4
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IFS upgrades and impact on Lipschitz number

oV
L= At||E||

@ 2 DP iterations are sufficient for 2nd order accuracy and typically the
recommendation in the literature has been 2 iterations. However,
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IFS upgrades and impact on Lipschitz number

oV
L= At||a|]

@ 2 DP iterations are sufficient for 2nd order accuracy and typically the
recommendation in the literature has been 2 iterations. However,

@ Higher resolution results in steeper velocity gradients

@ Successive resolution updates and stretching of timestep for efficiency
have shifted upwards mean Lipschitz numbers in IFS

Horizontal Res  Vertical levs tstep (s) At/Ax

TL399 (50km) 91 1200 0.02
TL511 (40km) 91 900 0.02
TL1279 (16km) 91 600 0.04
Tco1279 (9km) 137 450 0.05
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Neoguri: impact of DP iterations
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(c) forecast with iter=>5, At/2 (d) forecast with iter=5, At/3
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Verification: 5 it - 3 it difference at t+96hrs Tcol279 res
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(a) z 500hPa RMSE difference (45 days) (b) RH 50 hPa RMSE difference

o Geopotential, winds and temperature errors reduce in extratropics,
improved precipitation over China

@ Improved TC prediction

o Allowed 12.5% increase of timestep from 400s to 450s without
degradation (not possible at original 3 iteration setup)
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“Dynamic selection” of number of DP iter

(a) # iterations (850hPa)

(b) # iterations (500hPa)

Stop iterating if iterations converged within a tolerance or the estimated
convergence rate crj is above a threshold:

”XD,[:] - XD,[:_II |

ik = ||X v—1 — X [u—z]”
Dy Dy

@ large #iterations selected at neighborhoud of TCs, storm track, above
orography
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Increasing DP iterations in 4DVAR TL perturbation model

(€) vmax=2 (d) Vmax=5 (&) vmax=10  (f) vmax=10 +
dynamic iteration

(Fig: strong cross polar flow case)

Dynamic iteration

@ +# of iter at each gridpoint are determined by the nonlinear forecast
model and stored

@ Nonlinear model, TL and adjoint models do same # of iterations at
each gidpoint (determined by nonlinear model)

© Dynamic iteration helps control instability by stopping diverging iter
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TL perturbation DP and multiple iterations

Du  Ou ou
1D li dvecti tion: —_ = — =0.
nonlinear advection equation Dt ot + u8x

TL perturbation DP (u*: extrapolated velocity, : lin interp weight):

W At n =1\ ¢ * =1 ¢ % —1], « ;
Xay=—"% [5“1' H(1 o )ouiptag Ul p g ooy (U, — Uj_p)}
V] v
1 Ni—p T Xa) v OXy(j) v
o)l = TAx byt = T A 1€ Dgop-1,%5-5]
or,
v _ At [v—-1] * [v—1] ¢ 1 [v—1], %
Xy = T ouj + (1 —aj T)oui, + o 5“1—;:—1} - §5Xd(j) Ly p 1

Large At, L, v = large 0xg4 = x4 + 0xg may be at different interval than x4 =
TL approx may become invalid (Li et al 1993)
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Summary

@ Inadequate convergence of DP in high res IFS in high CFL regions
with strong shear with small number of iterations

@ Increasing number of iterations improves convergence and forecast
accuracy and improves structure of hurricanes allowing even larger
timesteps which offsets extra cost

@ Need for increasing iterations is confirmed by an experimental
“dynamic DP iteration” code

@ Increasing iterations in IFS tangent-linear model led to instabilities in
TL model but these can be controlled by “dynamic selection of
iteration number” which stops diverging iterations

More details in MWR Sep 2016 “Sensitivity of the ECMWF model to
Semi-Lagrangian departure point iterations”
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