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Why r-adaptivity

Does not create load balancing problems on parallel
computers,

Does not require mapping solutions between different meshes,

Does not necessarily lead to sudden changes in resolution,

Can be retro-fitted into existing models
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Objectives of the NERC project

Solve optimal transport equations on the sphere to efficiently
redistribute a mesh

Assess mesh quality for the equations of the atmosphere

Develop mimetic finite element/volume methods on moving
meshes

Compare with established test cases

Establish suitable refinement criteria for the atmosphere
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r-adaptive mesh redistribution

Original computational mesh Tc Adapted physical mesh Tp

F (Tc) = Tp; ∀ξ ∈ Tc ∃x ∈ Tp s.t. x = F (ξ) (1)
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Monitor function equidistribution

Given m(x) > 0, find F : Ωc → Ωp such that

m(x)|J(ξ)| = c. (2)
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Optimally transported meshes

Seek F ∗ such that

F ∗ = arg min
F

||F − I|| =
∫

Ωc

|ξ − F (ξ)|2 dξ. (3)

Theorem (Brenier (1991) [in cuboid domains])

There exists a unique optimally transported map F(ξ) which
minimises (3), and the Jacobian of which satisfies the
equidistribution equation (2). Furthermore, F(ξ) can be written as
the gradient (with respect to ξ) of a convex scalar (mesh)
potential φ(ξ), so that

x(ξ) = ∇ξφ(ξ), Hξ(φ(ξ)) � 0. (4)

Brenier, Y. (1991). Polar Factorization and Monotone Rearrangement of Vector-Valued Functions.

Communications on Pure and Applied Mathematics, XLIV:375–417
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m(x)|H(φ)| = c

m(∇φ)|H(φ)| = c
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Optimal transport on Sn 1

Theorem (McCann (2001))

Let M be a connected, complete smooth Riemannian manifold,
equipped with its standard volume measure dx. Let µ, ν be two
probability measures on M with compact support, and let the
objective function c(ξ, x) be equal to d(ξ,x)2, where d is the
geodesic distance on M . Further, assume that µ is absolutely
continuous with respect to the volume measure on M . Then, there
is a unique optimal transport map F where F pushes forward the
measure µ onto ν. Then, (using classical optimal transport
notation):

F#(µ) = ν i.e. x = F (ξ) = expξ[∇φ(ξ)] (5)

for some d2/2-convex potential φ.

McCann, R. (2001). Polar factorization of maps on Riemannian manifolds.

Geometric & Functional Analysis GAFA, 11(3):589–608
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Optimal transport on Sn 2

Corollary (Weller, B., Budd, Cullen (2015))

There exists a unique, optimally transported mesh on the sphere
that satisfies the equidistribution principle. Moreover, that mesh is
defined by a c-convex scalar potential function that satisfies the
Monge-Ampère type equation

m(expξ[∇φ(ξ)])|J(ξ)| = c. (6)

Corollary (Weller, B., Budd, Cullen (2015))

The optimally transported mesh on the sphere satisfying the
equidistribution principle does not exhibit tangling.

Weller, H., Browne, P., Budd, C., and Cullen, M. (2016). Mesh adaptation on the sphere using optimal transport
and the numerical solution of a Monge-Ampère type equation.

Journal of Computational Physics, 308:102–123
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Convergence 1
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Convergence 2
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Mesh redistribution on the sphere
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Our moving mesh strategy

Finite volume discretisation (OpenFOAM)

Prescribed mesh movement
(Coming from Optimal transport solver eventually)

No conservative mapping of fields between meshes

Work on “physical” mesh and not on a computational mesh
with metric terms
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Moving meshes with orography

We consider
∂T

∂t
+∇ · (uT ) = 0 (7)

which in flux form becomes

∂T

∂t
+

1

V

∑
f

φf = 0 (8)

where φf = Tu · nf .
In the presence of a mesh velocity um, the equation which we
solve becomes

∂T

∂t
+

1

V

∑
f

(
φf − φmf

)
= 0 (9)

Look at a 1D problem, i.e. a single cell width in y and z.
Consider only u s.t. ∇ · (u) = 0.
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The difficulties

V t+1 = V t + δt
∑
f

φmf (10)
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The moving mesh
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Nonconstant T , ∇ · (u) = 0,u 6= 0
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Orography: constant T , ∇ · (u) = 0,u 6= 0 – not working!
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Orography: constant T , ∇ · (u) = 0,u 6= 0 – working!!
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Variable T , ∇ · (u) = 0,u 6= 0
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Volume of the mesh
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Volume of the mesh
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Future work

Move from explicit to implicit timestepping

Implement the shallow water equations - does changing mass
& mesh volume introduce spurious waves?

Extension to the a ring and then a spherical shell - does
spherical geometry impact on the calculations of the mesh
fluxes φmf ?

Selection of monitor functions: is vorticity actually useful or is
there a better, more robust refinement measure?
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Thank you for listening

Browne, P., Budd, C., Piccolo, C., and Cullen, M. (2014). Fast three dimensional r-adaptive mesh redistribution.

Journal of Computational Physics, 275:174–196

Weller, H., Browne, P., Budd, C., and Cullen, M. (2016). Mesh adaptation on the sphere using optimal transport
and the numerical solution of a Monge-Ampère type equation.

Journal of Computational Physics, 308:102–123

Browne, P., Prettyman, J., Weller, H., Pryer, T., and Lent, J. V. (2016). Nonlinear solution techniques for solving a
Monge-Ampère equation for redistribution of a mesh.
http://arxiv.org/abs/1609.09646.

Under Review
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