## Results and challenges with Dynamo the Met Office's next generation dynamical core

S. Adams, M. Ashworth, <u>T. Benacchio</u>, R. Ford, M. Glover, M. Guidolin, M. Hambley, M. Hobson, I. Kavcic, C.Maynard, T. Melvin, E. Mueller,
S. Mullerworth, A. Porter, S. Pring, M. Rezny, G. Riley, S. Sandbach, R. Sharp,
B. Shipway, K. Sivalingam, P. Slavin, J. Thuburn, R. Wong, N. Wood

#### ECMWF, 3 October 2016

#### Plan

#### ENDGame and scalability

#### A new dynamical core - GungHo

#### Mixed finite elements

#### Results

Crown Copyright Met Office

## The name of the game

#### **Global NWP index**



Crown Copyright Met Office

### Met Office's Unified Model

Single atmospheric model for

► Global ( $\Delta x \approx 17$  km) and mesoscale ( $\Delta x \approx 4.4 - 1.5$  km) operational forecasts

**Climate predictions (** $\Delta x \approx 120$  km, T > 10 yrs)

**Research mode (** $\Delta x < 1$  km)

#### 26 years old

Crown Copyright Met Office

#### **ENDGame**

Semi-implicit semi-Lagrangian time integration, no  $\Delta t \leq \frac{\Delta x}{U}$ 



#### C-grid horizontal, Charney-Phillips vertical staggering

Wood et al. 2014, B. and Wood 2014, B. and 2014, B. an

### **Computational size**

Global model at 17 km resolution

▶ 
$$1536 \times 1152 \times 70 \approx 124M$$
 points

$$\blacktriangleright$$
  $T=7$  days 3 hrs,  $\Delta t=7$  min 30 sec  $\Longrightarrow N_t=1368$ 

#### To be completed in one hour

#### Efficient implementation needed!

#### **The bottleneck - Scalability**



E-W spacing vanishes at Poles  $\implies$  grid locality lost





### HPC



nextplatform.com

Crown Copyright Met Office

ECMWF, 03/10/2016 - p.9

### **New supercomputer**





#### Cray XC40, complete in Q1/2017

≈ 500K cores, 16 PFlops,
 1.2 EB storage

## A new dynamical core - GungHo





### **GungHo institutions**

**Met Office** 

**U** Exeter

Imperial College London

**U** Bath

**U** Reading

**U** Leeds

U Manchester

U Warwick

**Hartree Centre** 

rown Copyright Met Office

### **GungHo - scientific requirements**

- Mass conservation
- Accurate representation of balance and adjustment
- Absence of, or well controlled, computational modes
- Geopotential or pressure gradient should not produce unphysical vorticity
- Energy conserving pressure term and Coriolis term
- No spurious fast propagation of Rossby modes
- Conservation of axial angular momentum
- Accuracy at least approaching second order
- Minimal grid imprinting

### **GungHo - aims**

- Achieve sustainable scalability
- Keep the good properties and maintain the same accuracy ( $\approx 2^{nd}$  order) of the current dynamical core
- More homogeneous grid: cubed sphere





rown Copyright Met Office

### LFRic

- Joint scientific software engineering work
- Separation of concerns





- Fortran 2003 kernels + algorithm, Python parallelization engine + auto code generation
- Resilient to future technology

## Mixed finite elements

### Compatibility

**Compatible** numerical schemes preserve continuous properties at the discrete level, e.g.

$$\nabla \cdot (\nabla \times \mathbf{f}) = 0$$
$$\nabla \times \nabla g = 0$$
$$\nabla \cdot (\mathbf{f}g) = \mathbf{f} \cdot \nabla g + g \nabla \cdot \mathbf{f}$$

### **Mixed finite elements**



#### At lowest order:



#### Equivalent to C-grid, Charney-Phillips staggered grid

Cotter and Shipton, 2012

#### **Vector-invariant form**

On a domain  $\Omega$ , solve:

$$\begin{split} \frac{\partial \mathbf{u}}{\partial t} + \frac{\mathbf{\xi}}{\rho} \times \mathbf{F} + 2\mathbf{\Omega} \times \mathbf{u} + \nabla \left(K + \Phi\right) + c_{pd}\theta \nabla \Pi &= 0, \\ \frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{F} &= 0, \\ \frac{\partial \theta}{\partial t} + \mathbf{u} \cdot \nabla \theta &= 0, \\ \Pi \left(\frac{1 - \kappa_d}{\kappa_d}\right) &= \frac{R_d}{p_0} \rho \theta \\ \mathbf{F} &= \rho \mathbf{u}, \quad \mathbf{\xi} = \nabla \times \mathbf{u}, \quad K = \frac{1}{2} \mathbf{u} \cdot \mathbf{u} \end{split}$$

#### Weak formulation

Find  $(\theta, \mathbf{u}, \rho) \in \mathbb{W}_0 \times \mathbb{W}_2 \times \mathbb{W}_3$  such that

$$\left\langle \mathbf{v}, \frac{\partial \mathbf{u}}{\partial t} \right\rangle = - \left\langle \mathbf{v}, \frac{\boldsymbol{\xi}}{\rho} \times \mathbf{F} + \nabla \Phi \right\rangle + \left\langle \nabla . \mathbf{v}, K \right\rangle + c_{pd} \left\langle \nabla . \left(\theta \mathbf{v}\right), \Pi \right\rangle$$
$$- \left\langle \mathbf{v}, 2\mathbf{\Omega} \times \mathbf{u} \right\rangle,$$
$$\left\langle \sigma, \frac{\partial \rho}{\partial t} \right\rangle = - \left\langle \sigma, \nabla . \mathbf{F} \right\rangle,$$
$$\left\langle \gamma, \frac{\partial \theta}{\partial t} \right\rangle = - \left\langle \gamma, \mathbf{u} \cdot \nabla \theta \right\rangle$$

for all test functions  $(\gamma, \mathbf{v}, \sigma) \in \mathbb{W}_0 \times \mathbb{W}_2 \times \mathbb{W}_3$ 

#### **Potential temperature space**

• Moving  $\theta \in \mathbb{W}_0 \longrightarrow \mathbb{W}_{\theta}$ 



Quadrature formulae on faces for boundary terms:

$$-\langle \mathbf{v}, c_p \theta \nabla \Pi \rangle = -c_p \langle\!\langle \theta \mathbf{v} \cdot \mathbf{n}, \Pi \rangle\!\rangle + c_p \langle\!\langle \theta \Pi, \nabla \cdot \mathbf{v} \rangle\!\rangle + c_p \langle\!\langle \Pi \mathbf{v}, \nabla \theta \rangle\!\rangle$$
$$\langle \mathbf{u} \cdot \nabla \theta, \gamma \rangle = \langle\!\langle \theta, \gamma \mathbf{u} \cdot \mathbf{n} \rangle\!\rangle - \langle \nabla \cdot (\gamma \mathbf{u}), \theta \rangle$$

#### **Equations on reference domain**

Pulling back the equations through the Piola transform

$$\widehat{\Omega} \xrightarrow{\phi} \Omega$$

with Jacobian  $J = d\phi$  (div and curl-conforming mapping):

$$\begin{split} \left\langle J\hat{\mathbf{v}}, \frac{J}{\det\left(J\right)} \frac{\partial \hat{\mathbf{u}}}{\partial t} \right\rangle &= -\left\langle J\hat{\mathbf{v}}, \frac{J^{-T}\hat{\boldsymbol{\xi}}}{\hat{\rho}\det\left(J\right)} \times J\hat{\mathbf{F}} \right\rangle + \left\langle \nabla.\hat{\mathbf{v}}, \frac{1}{2} \left(\frac{J\hat{\mathbf{u}}}{\det\left(J\right)}\right) \cdot \left(\frac{J\hat{\mathbf{u}}}{\det\left(J\right)}\right) \right\rangle \\ &- \left\langle \hat{\mathbf{v}}, \nabla\Phi \right\rangle - \left\langle \frac{J\hat{\mathbf{v}}}{\det\left(J\right)}, 2\mathbf{\Omega} \times (J\hat{\mathbf{u}}) \right\rangle + c_{pd} \left\langle \hat{\theta} \nabla.\hat{\mathbf{v}} + \hat{\mathbf{v}}.\nabla\hat{\theta}, \Pi \right\rangle, \\ \left\langle \hat{\sigma}, \frac{\partial\hat{\rho}}{\partial t} \det\left(J\right) \right\rangle &= - \left\langle \hat{\sigma}, \nabla.\hat{\mathbf{F}} \right\rangle, \\ \left\langle \hat{\gamma}, \frac{\partial\hat{\theta}}{\partial t} \det\left(J\right) \right\rangle &= - \left\langle \hat{\gamma}, \hat{\mathbf{u}}.\nabla\hat{\theta} \right\rangle. \end{split}$$

rown Copyright Met Office

### **Discrete formulation**

Expansion as a weighted sum of basis functions

$$\hat{\psi} = \sum_i \tilde{\psi}_i b_i$$

$$M_{2}\frac{d\tilde{u}}{dt} = RHS_{u}$$

$$M_{3}\frac{d\tilde{\rho}}{dt} = RHS_{\rho}$$

$$M_{0}\frac{d\tilde{\theta}}{dt} = RHS_{\theta}$$

$$M_{0} = \langle \hat{\gamma}, \hat{\gamma} \det(J) \rangle, \ M_{2} = \left\langle \frac{J\hat{\mathbf{v}}}{\det(J)}, J\hat{\mathbf{v}} \right\rangle, \ M_{3} = \langle \hat{\sigma}, \hat{\sigma} \det(J) \rangle$$

### **Semi-implicit time discretization**

Newton's method:

$$J\left(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right) = -\mathbf{R}(\mathbf{x}^{(k)})$$

Linearization around a reference state  $\mathbf{x}^{*}$ :

$$J\left(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right) \equiv J\mathbf{x}' \approx L\mathbf{x}'$$
$$L\mathbf{x}' = \begin{cases} \mathbf{u}' + \tau \Delta t c_{pd} \left(\theta^* \nabla \Pi' + \theta' \nabla \Pi^*\right) \\ \theta' + \tau \Delta t \mathbf{u}' \cdot \nabla \theta^* \\ \rho' + \tau \Delta t \nabla \cdot \left(\rho^* \mathbf{u}'\right) \end{cases}$$

### Semi-implicit time discretization

```
Do n = 1, n time
     Compute time-level n terms \mathbf{R}(\mathbf{x}^n)
     Do o = 1, n outer
           Compute advective wind \overline{u}
           Compute advective terms \mathbf{R}^{adv}(\mathbf{x}^n, \overline{\mathbf{u}})
           Do i = 1, n\_inner
                 Compute time-level n + 1 terms \mathbf{R}(\mathbf{x}^{n+1})
                 Solve for increment \mathbf{x}'
           End inner loop
     End outer loop
End timestep loop
```

#### In progress - density advection

#### **Conservative**, flux-form

• Mass flux in  $\mathbb{W}_2$  space, density in  $\mathbb{W}_3$  space

Dimensionally split scheme for flux calculation

- ► 1D swept area approach
- No 2d calculations on complicated geometry
- **PPM**  $\Longrightarrow$  use of CFL > 1

# Other options in code base: Method of Lines, FE advection.

Putnam and Lin, 2007





Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



Thermal perturbation over a stably stratified, 10-km deep atmosphere on reduced planet

Serial runs with autogenerated code, lowestorder elements



46080 cells

T. Melvin ECMWF, 03/10/2016 - p.42

rown Copyright Met Office

 $\mathbb{W}_0$  vs.  $\mathbb{W}_{\theta}$ 





315.9

315.85

315.8

315.75

315.7

315.65

315.6







ECMWF, 03/10/2016 - p.43

### **Results - Straka**

Density current on neutrally stratified atmosphere (constant background  $\theta$ ).

$$T' = \begin{cases} -15 \operatorname{K} \left[ \frac{1}{2} (1 + \cos(\frac{\pi}{2}r)) \right] & (r \leq 1) \\ 0 & \text{otherwise} \end{cases}$$





rown Copyright Met Office

ECMWF, 03/10/2016 - p.44

T. Melvin

### **Density advection**

#### Solid body wind, parallel runs



#### 24 cells per horizontal panel, CFL $\approx$ 0.1



### **Density advection**

#### Solid body wind, parallel runs



#### 24 cells per horizontal panel, CFL $\approx$ 0.1

rown Copyright Met Office



### **Outlook - To do**

#### ► Transport

- Orography
- Multigrid solver
- Physics-dynamics coupling
  - Coupling FE and FV
  - Impact of physics on dynamics

### Scaling



- Auto-generated parallel layer.
- Weak scaling: same amount of work per processor, perfect: horizontal line.
- Strong scaling (dashed): same global size, perfect: 4x speed-up.

Dynamo 1.0 code release, 31.3.16 (now 1.1).

#### C. Maynard

rown Copyright Met Office

## **Questions?**

tommaso.benacchio@metoffice.gov.uk

#### References

- Cotter, C & Shipton, J 2012. JCP 231, 7076-7091.
- ▶ Putnam, WM & Lin, S-J 2007. JCP 227, 55-78.
- **Staniforth, A & Thuburn, J 2012. QJRMS 138, 1-26.**
- Ullrich PA, Jablonowski C, Kent J, Lauritzen PH, Nair RD, and Taylor MA. 2012: Dynamical Core Model Intercom- parison Project (DCMIP) test case document. DCMIP Summer School, 83 pp. [Available online at http://earthsystemcog.org/ projects/dcmip-2012/.]