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Motivation:

Gravity-wave (GW) parameterizations

GW parameterizations based on WKB theory

(e.g. Grimshaw 1975)

• Simplifications for efficiency:

– Single column

– Steady state (turbulence needed)

• Limitations:

– Without these simplifications non-interaction theorem does not need turbulence for

wave/mean-flow interaction (Bühler & McIntyre 1998, 2003, 2005)

– Transience and horizontal propagation have effects (Dunkerton1984, …, Alexander et 

al 2010, Kawatani et al 2010, Senf & Achatz 2011, Ribstein et al 2015)

• More general approach yet to be fully implemented

• Some issues: 

– Dependence on stratification

– Vortical/geostrophic mode

– Numerical implementation

– Direct wave-mean-flow interaction/impact by wave breaking

– Mesoscale/submesoscale interaction
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Classic WKB (Grimshaw 1975, …) for illustration 1D:

Locally monochromatic fields of the form  𝑏′ 𝒙, 𝑡 = ℜ 𝐵 𝑧, 𝑡 𝑒𝑖𝜙(𝒙,𝑡)

local wavenumber and frequency: 𝒌(𝑧, 𝑡) = 𝑘𝒆𝒙 +𝑚𝒆𝒛 = 𝛻𝜙, 𝜔(𝑧, 𝑡) = −𝜕𝜙/𝜕𝑡

wave-action density 𝑨 𝒛, 𝒕 so that (e.g.)

𝑬𝑮𝑾 𝒛, 𝒕 = 𝑨 𝒛, 𝒕  𝝎(𝒎)

Along rays, defined by 𝒅𝒛/𝒅𝒕 = 𝒄𝒈

𝒅𝒎

𝒅𝒕
= −𝒌

𝝏𝑼

𝝏𝒛
,

𝒅𝑨

𝒅𝒕
= −𝑨

𝝏𝒄𝒈

𝝏𝒛

𝐌ean flow:
𝜕𝑼

𝜕𝑡
= −

1

 𝜌

𝜕

𝜕𝑧
 𝜌 𝑢′𝑤′ = −

1

 𝜌

𝜕

𝜕𝑧
𝒄𝒈𝒌 𝑨

𝒛

𝒕

Ray tracing with caustics:

Numerics for fully coupled WKB
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GW packet refracted by a jet

time 

LES WKB

Ray tracing with caustics:

Numerics for fully coupled WKB

Rieper et al (2013)
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Ray tracing with caustics:

1D for illustration

Locally monochromatic fields

wave-action density 𝑨 𝒛, 𝒕 so that (e.g.)

𝑬𝑮𝑾 𝒛, 𝒕 = 𝑨 𝒛, 𝒕  𝝎(𝒎)

Along rays, defined by 𝒅𝒛/𝒅𝒕 = 𝒄𝒈

𝒅𝒎

𝒅𝒕
= −𝒌

𝝏𝑼

𝝏𝒛
,

𝒅𝑨

𝒅𝒕
= −𝑨

𝝏𝒄𝒈

𝝏𝒛

𝐌ean flow:
𝜕𝑼

𝜕𝑡
= −

1

 𝜌

𝜕

𝜕𝑧
 𝜌 𝑢′𝑤′ = −

1

 𝜌

𝜕

𝜕𝑧
𝒄𝒈𝒌 𝑨

𝒛

𝒕
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Ray tracing with caustics:

1D for illustration

Locally monochromatic fields

wave-action density 𝑨 𝒛, 𝒕 so that (e.g.)

𝑬𝑮𝑾 𝒛, 𝒕 = 𝑨 𝒛, 𝒕  𝝎(𝒎)

Along rays, defined by 𝒅𝒛/𝒅𝒕 = 𝒄𝒈

𝒅𝒎

𝒅𝒕
= −𝒌

𝝏𝑼

𝝏𝒛
,

𝒅𝑨

𝒅𝒕
= −𝑨

𝝏𝒄𝒈

𝝏𝒛

𝐌ean flow:
𝜕𝑼

𝜕𝑡
= −

1

 𝜌

𝜕

𝜕𝑧
 𝜌 𝑢′𝑤′ = −

1

 𝜌

𝜕

𝜕𝑧
𝒄𝒈𝒌 𝑨

Crossing rays (caustics): uniqueness problem for 𝐴 and 𝑚!

𝒛

𝒕
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Ray tracing with caustics:

examples for caustic situations

Nonuniqueness of wave number and wave-action density arises easily:

e.g. reflection at a jet
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Ray tracing with caustics:

examples for caustic situations

Nonuniqueness of wave number and wave-action density arises easily:

e.g. overtaking rays
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Ray tracing with caustics:

examples for caustic situations

Nonuniqueness of wave number and wave-action density arises easily:

e.g. by

wave-induced mean flow
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Ray tracing with caustics:

1D for illustration

linear limit: wave field can be decomposed into fields with singlevalued wavenumbers

 𝑩 = ℜ 𝒃𝟏 𝜻, 𝝉 𝒆𝒊 𝒌𝒙+ 𝝓𝟏(𝜻,𝝉)/𝝐 + 𝒃𝟐 𝜻, 𝝉 𝒆𝒊 𝒌𝒙+ 𝝓𝟐(𝜻,𝝉)/𝝐

𝝏𝝓𝟏

𝝏𝜻
= 𝒎𝟏

𝝏𝝓𝟐

𝝏𝜻
= 𝒎𝟐

𝑫𝒈𝜶𝑨𝜶

𝑫𝝉
=
𝝏𝑨𝜶
𝝏𝝉

+ 𝒄𝒈𝜶
𝝏𝑨𝜶
𝝏𝜻

= −
𝝏𝒄𝒈𝜶

𝝏𝜻
𝑨𝜶 + 𝑫𝜶 (𝜶 = 𝟏, 𝟐)

case dependent surgery: very complex
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Ray tracing with caustics:

spectral approach

linear limit: wave field can be decomposed into fields with singlevalued wavenumbers

spectral description in phase space (Dewar 1970, Dubrulle & Nazarenko 1997, Bühler & 

McIntyre 1999, Hertzog et al 2000, Muraschko et al 2015) does this automatically

wave-action density

𝓝 𝒎, 𝒛, 𝒕 = ∫ 𝒅𝜶 𝑨𝜶 𝒛, 𝒕 𝜹 𝒎 −𝒎𝜶 𝒛, 𝒕

satisfies conservation equation

𝝏𝓝

𝝏𝒕
+

𝝏

𝝏𝒛
𝒄𝒈𝓝 +

𝝏

𝝏𝒎
 𝒎𝓝 = 𝟎  𝒎 = −𝒌

𝝏𝑼

𝝏𝒛

𝐌ean flow:
𝜕𝑼

𝜕𝑡
= −

1

 𝜌

𝜕

𝜕𝑧
 𝜌 𝑢′𝑤′ = −

1

 𝜌

𝜕

𝜕𝑧
∫ 𝒅𝒎 𝒄𝒈𝒌𝓝

Generalization to 3D straightforward
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Ray tracing with caustics:

efficient numerics (Muraschko et al 2015)

phase-space velocity is non-divergent

𝝏𝒄𝒈

𝝏𝒛
+
𝝏  𝒎

𝝏𝒎
=

𝝏

𝝏𝒛

𝝏𝛀

𝝏𝒎
+

𝝏

𝝏𝒎
−
𝝏𝛀

𝝏𝒛
= 𝟎

hence

• flow is volume preserving

• rays cannot cross

• Wave-action density conserved on rays

𝑫𝓝

𝑫𝒕
=
𝝏𝓝

𝝏𝒕
+ 𝒄𝒈

𝝏𝓝

𝝏𝒛
+  𝒎

𝝏𝓝

𝝏𝒎
= 𝟎

• region of nonzero 𝓝 approximated by rectangular ray volumes

• ray volumes move with central ray

• ray volumes change height (Δz) and width (Δm) 

in area-preserving manner
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Ray tracing with caustics:

efficient numerics (Muraschko et al 2015)

hydrostatic wave packet

(Boussinesq) 

Rays are no wavepackets

No turbulence taken into

account! 
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GW packet refracted by a jet

LES WKB ray tracer WKB finite volume

Ray tracing with caustics:

no numerical instabilities (Bölöni et al 2016, submitted)
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– transient GWs can interact with the mean flow without the onset of turbulence

(eg Dosser & Sutherland 2011)

– GW parameterizations (steady-state approximation) only rely on wave breaking

comparative role of wave transience (direct interaction) vs wave breaking?

Direct wave-mean-flow coupling:

comparsion with role of wave breaking
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horizontally infinite GW packets in interaction with mean flow

– 1D: 𝑈 𝑧, 𝑡 , 𝐴 𝑧, 𝑡 ,𝑚 𝑧, 𝑡

– direct GW-mean-flow interaction always active

– WKB: 𝑬𝒎𝒆𝒂𝒏 + 𝑬𝒘𝒂𝒗𝒆 = 𝒄𝒐𝒏𝒔𝒕.

tools:

– wave resolving LES (reference data)

– fully coupled WKB

– turbulence onset

– once static instability threshold can be surpassed

∫ 𝒅𝒎 𝒎𝟐
𝒅 𝑩 𝟐

𝒅𝒎
= ∫ 𝒅𝒎𝓝 𝒇 𝒎 > 𝜶𝑵𝟐

– parameter 𝜶 ∈ [1,2] accounting for phase cancellations between spectral components

– (scale selective) eddy viscosity/diffusivity reduces wave amplitude to inst. threshold

direct wave-mean-flow interaction vs wave breaking

(Bölöni et al 2016)
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direct wave-mean-flow interaction vs wave breaking

(Bölöni et al 2016)

static instability hydrostatic wave packet

LES

(wave-resolving)

WKB

WKB with saturation

(turbulence param.)
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direct wave-mean-flow interaction vs wave breaking

(Bölöni et al 2016)

static instability hydrostatic wave packet

LES

(wave-resolving)

WKB

WKB with saturation

(turbulence param.)
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direct wave-mean-flow interaction vs wave breaking

(Bölöni et al 2016)

static instability non-hydrostatic wave packet

LES

(wave-resolving)

WKB with saturation

(turbulence param.)

steady-state

(GW parameterization)
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direct wave-mean-flow interaction vs wave breaking

(Bölöni et al 2016)

static instability non-hydrostatic wave packet

LES

(wave-resolving)

WKB with saturation

(turbulence param.)

steady-state

(GW parameterization)
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From GCM data (HAMMONIA, Schmidt et al 2006):

• Seasonally dependent reference climatology  𝒖 𝜆, 𝜙, 𝑧 ,  𝑇 𝜆, 𝜙, 𝑧

• Diurnal heating cycle ℜ 𝑛𝑄𝑛 𝜆, 𝜙, 𝑧 𝑒𝑖𝑛Ω𝑡

Linear model (Achatz et al 2008, based on KMCM, Becker and Schmitz 2003)

𝒖 =  𝒖 + 𝒖′ 𝜆, 𝜙, 𝑧, 𝑡
𝑇 =  𝑇 + 𝑇′ 𝜆, 𝜙, 𝑧, 𝑡

𝜕

𝜕𝑡
+  𝒖 ⋅ 𝛻ℎ 𝒖′ +⋯ = −

1

 𝜌
𝛻 ⋅  𝜌 𝒗𝐺𝑊𝒖𝐺𝑊

𝜕

𝜕𝑡
+  𝒖 ⋅ 𝛻ℎ 𝑇′ + 𝒗′ ⋅ 𝛻  𝑇 +⋯ = ℜ 

𝑛

𝑄𝑛 𝜆, 𝜙, 𝑧 𝑒𝑖𝑛Ω𝑡 − 𝛻ℎ ⋅ 𝒖𝐺𝑊 𝑇𝐺𝑊

GW fluxes from 4D WKB model with rays propagating on  𝒖 + 𝒖′,  𝑻 + 𝑻′

First implementation of a fully coupled transient ray tracer into a global model

role of lateral propagation

linear large-scale dynamics in interaction with GWs
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linear large-scale dynamics in interaction with GWs

(Ribstein et al 2015, Ribstein & Achatz 2016)

3D effects (beyond single column)

• Horizontal GW propagation
𝑑𝒙ℎ
𝑑𝑡

= 𝒄𝑔ℎ,
𝑑𝑧

𝑑𝑡
= 𝑐𝑔𝑧

• Horizontal gradients in reference climatology and tides

𝑑𝒌ℎ
𝑑𝑡

= −𝑘 𝛻ℎ  𝑢 + 𝑢′ − 𝑙 𝛻ℎ  𝑣 + 𝑣′ ,
𝑑𝑚

𝑑𝑡
= −𝑘

𝑑

𝑑𝑧
 𝑢 + 𝑢′ − 𝑙

𝑑

𝑑𝑧
 𝑣 + 𝑣′

• Horizontal GW flux convergence

𝜕

𝜕𝑡
+  𝒖 ⋅ 𝛻ℎ 𝒖′ +⋯ = −

1

 𝜌

𝜕

𝜕𝑧
 𝜌 𝒘𝐺𝑊𝒖𝐺𝑊 −

1

 𝜌
𝛻ℎ ⋅  𝜌 𝒖𝐺𝑊𝒖𝐺𝑊

𝜕

𝜕𝑡
+  𝒖 ⋅ 𝛻ℎ 𝑇′ + 𝒗′ ⋅ 𝛻  𝑇 +⋯ = ℜ 

𝑛

𝑄𝑛 𝜆, 𝜙, 𝑧 𝑒𝑖𝑛Ω𝑡 − 𝛻ℎ ⋅ 𝒖𝐺𝑊 𝑇𝐺𝑊
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Tidal model in interaction with GWs

(Ribstein et al 2015, Ribstein & Achatz 2016)

3D effects (beyond single column)

zonal-mean daily-mean GW forcing (December)
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Summary

• numerical implementation fully interactive WKB

– no instabilities due to caustics

– very efficient

• transient-GW dynamics

– direct GW-mean-flow interaction dominates over GW breaking

– GW parameterizations not reliable

• lateral-propagation effects matter in middle atmosphere
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DFG Research Unit MS-GWaves
https://ms-gwaves.iau.uni-frankfurt.de/index.php

• Investigation multi-scale dynamics of GWs in 6 projects

• prognostic WKB GW parameterization to be developed for NWP and climate model

• To be addressed:

• Sources

• Propagation

• dissipation

• Combined effort: 

• Theory, 

• modelling, 

• measurements, 

• laboratory experiments


