

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Wind Observations

Ad.Stoffelen@knmi.nl EUMETSAT OSI SAF EUMETSAT NWP SAF EU CMEMS OSI TAC EU MyWave EU NORSEWIND ESA eSurge ESA GlobCurrent ESA Aeolus

Overview

- Spatially consistent observed winds are available
- How do they compare with NWP model winds?

- 1. Scatterometer ocean vector winds
- 2. High-resolution radiosonde profiles
- 3. Aircraft flight level

References

- W. Lin et al., 2015, ASCAT wind quality under high subcell wind variability conditions, JGR Oceans, DOI: 10.1002/2015JC010861, <u>http://onlinelibrary.wiley.com/doi/10.1002/2015JC010861/full</u>
- Zadelhoff, G.-J Van, A Stoffelen, P W Vachon, J Wolfe, J Horstmann, M Belmonte Rivas, Atmospheric Measurement Techniques Retrieving hurricane wind speeds using cross-polarization C-band measurements, Atmospheric Measurement Techniques 02/2014; 7(2):437-449.
- Vogelzang, Jur, Gregory P. King, Ad Stoffelen, Spatial variances of wind fields and their relation to second-order structure functions and spectra, Journal of Geophysical Research: Oceans 01/2015
- King, Gregory P., Jur Vogelzang, Ad Stoffelen, Upscale and downscale energy transfer over the tropical Pacific revealed by scatterometer winds, Journal of Geophysical Research: Oceans 12/2014
- King, Gregory P., Jur Vogelzang, Ad Stoffelen, Second-order structure function analysis of scatterometer winds over the Tropical Pacific: Part 1. Spectra and Structure Functions, Journal of Geophysical Research: Oceans 12/2014,
- Mccoll, Kaighin A., Jur Vogelzang, Alexandra G Konings, Dara Entekhabi, María Piles, Ad Stoffelen, Extended Triple Collocation: estimating errors and correlation coefficients with respect to an unknown target, Geophysical Research Letters 10/2014,
- Wijnant, I.L., G.J. Marseille, A. Stoffelen, H.W. van den Brink and A. Stepek, Validation of KNMI Wind atlas with scatterometer winds (Phase of KNW project), KNMI Technical Report TR353, DOI:10.13140/RG.2.1.2707.8562
- J. Edson et al., COARE3.5 and wave boundary layer
- International Ocean Vector Winds Science Team meetings (IOVWST)
- Houchi et al. (papers and thesis)

EO Wind Services at KNMI

- 24/7 Wind product services (OSI SAF)
 - Constellation of satellites
 - High quality winds, QC
 - Timeliness 30 min. 2 hours
 - Service messages
 - QA, monitoring
- Software services (NWP SAF)
- Portable Wind Processors
- Weather model comparison
- CMEMS L3 EO wind production
- Organisations involved: KNMI, EUMETSAT, EU, ESA, NASA, NOAA, ISRO, SOA, WMO, CEOS, ..
- Users: NHC, JTWC, ECMWF, NOAA, NASA, NRL, BoM, UK MetO, M.France, DWD, CMA, JMA, CPTEC, NCAR, NL, .

More information:

<u>www.knmi.nl/scatterometer</u> Wind Scatterometer Help Desk Email: <u>scat@knmi.nl</u>

Observations and Models

Very Stable

- ASCAT-A beams stay within a few hundreds of a dB (m/s)
- Cone position variation due to seasonal wind variability

reprocessed ASCAT A beam offsets from CONE METRICS (relative to mean 2013)

Wind stress

- Radiometers/scatterometers measure ocean roughness
- Ocean roughness consists in small (cm) waves generated by air impact and subsequent wave breaking processes; depends on gravity, water mass density, surface tension σ, and e.m. sea properties (assumed constant)
- Air-sea momentum exchange is described by $\tau = \rho_{air} u_* u_*$, the stress vector; depends on air mass density ρ_{air} , friction velocity vector u_*
- Surface layer winds (e.g., *u*₁₀) depend on *u*_{*}, atmospheric stability, surface roughness and the presence of ocean currents
- Equivalent neutral winds, u_{10N}, depend only on u_{*}, surface roughness and the presence of ocean currents and is currently used for backscatter geophysical model functions (GMFs)
- Stress-equivalent wind, $u_{10S} = \sqrt{\rho_{air}} \cdot u_{10N} / \sqrt{\rho_0}$, is suggested to be a better input for backscatter GMFs, since more closely related to τ

How good are these winds?

Triple collocation errors

ASCAT, buoy and ECMWF data from winter 2012/ 2013

- Small scatterometer wind errors on scatterometer scale
- All scatterometers have very similar local quality
- Buoys measure local variability

	Scatterometer		Buoys		ECMWF	
m/s	σ	σ_v	σ	σ_v	σ	σν
ASCAT-A 25-km	0.63	0.71	1.21	1.35	1.39	1.44
ASCAT-B 25-km	0.63	0.66	1.26	1.39	1.38	1.42

ECMWF OPS improves

- Scatterometer O variance under 200 km constant
- <200-km variance B increases to 80% (u), resp. 60% (v) of O
- O-B decreases, particularly for v
- l≈v and u≈t, but u≠v and l≠t

Developing gust band

- Convergence and curl structures associated with convective cell
- Inflow convergence
 - Precipitation is associated with wind downburst
- Shear zones with curl (+ and -)
- Abundant air-sea interaction

PDFs of DIV and VORT

ASCAT QC

- We can produce winds with SD of buoy-scatterometer difference of 0.6 m/s, but would exclude all high-wind and dynamic air-sea interaction areas
- The winds that we reject right now in convective tropical areas are noisy (SD=1.84 m/s), but generally not outliers!
- What metric makes sense for QC trade-off?

Estimated B error variances

ECMWF Ensemble Data Assimilation (EDA background error) ASCAT-derived ECMWF background error by triple collocation in QC classes

Wind Speed

ASCAT

MAM

Annual 2014

DJF

JJA

0.06 11.50 12.94 14.38 15.81 17.25 18.69 20.12 21.56 20

SON

Anomaly (ASCAT-NWP)

Wind **Divergence**

(1E-5) 1/s

75-0.50-0.25 0.00 0.25 0.50 0.75

ASCAT

DJF

-0.06-0.12-0.19-0.25-0.31-0.38-0.4

(1E-5) 1/s

-0.50-0.25 0.00 0.25 0.50 0.75 1.00 1.25

MAM

JJA

Annual 2014

SON

Anomaly (ASCAT-NWP)

Wind Curl

(1E-5) 1/

-1.50-1.00-0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

1/8 0.30 0.28 0.23 0.19 0.15 0.11 0.07 0.04 0.09 -0.04 -0.08 -0.11 -0.15 -0.19 -0.23 -0.29 -0.

ASCAT

DJF

0.08-0.11-0.15-0.19-0.23-0.26

(1E-5) 1/s

0-3.50-3.00-2.50-2.00-1.50-1.00-0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.0

MAM

1/s 0.30 0.26 0.22 0.19 0.15 0.11 0.07 0.04 0.00 -0.04 -0.08 -0.11 -0.15 -0.19 -0.23 -0.30 -

JJA

Annual 2014

SON

Anomaly (ASCAT-NWP)

MA

RapidScat on ISS

http://www.telegraaf.nl/tv/opmerkelijk/23929606/Astronaut_ filmt_ISS_met_GoPro__.html

ISS Expedition 42_US EVA2 GoPro

All ∆s

- All WVCs accepted by both
- A/RSCAT rejects 1/10%
- High latitude low bias RSCAT
- Convection stands out vs ECMWF
- RSCAT and ASCAT much agree on small scales! (must be wind, no rain!)
- RSCAT little more red though in tropics (rain?)
- Currents?

Zonally Averaged Wind Divergence and Curl

- C- and Ku-band winds are very similar
- Also, curl and divergence show very similar latitudinal variation
- Not hindered by a Ku-band rain effect

E.Rodriguez

Coupling ocean and atmosphere (climate scales)

Precision

- Scatterometer roughness relates to the relative atmosphere-ocean motion
- Buoy winds are absolute with respect to the earth frame

Mean differences between scatterometer winds and TAO anemometer winds are due to ocean currents.

- ADCP zonal currents extrapolated to 5-m depth averaged over three meridians (155°, 140°, 125°W) from TAO buoy servicing cruises Fall of 1999.
- Average difference between TAO and QuikSCAT zonal wind components at TAO buoys before (asterisks) and after (open circles) removing a 0.2 ms⁻¹ bias.
- The 1 ms⁻¹ differences between the anemometer and scatterometer winds are clearly due to the ocean currents.

K.A. Kelly, S. Dickinson, M.J. McPhaden and G.C. Johnson, submitted to GRL

Satellite Wind&

Surface Stress and Roughness at High Winds

Wave surface layer

- <u>https://www.dropbox.com/s/hys9ekhvzji5y5o/Winds%20o</u> <u>n%20waves.avi?dl=0</u>
- Scatterometers only see roughness/stress and retrieval residuals do not depend on sea state (so far)

Flight level spectra

- Observed -5/3 turbulence spectrum below 500km, just like at the surface, down to km scale
- Collocated ECMWF spectra are much steeper, both MARS and IFS
- VHAMP final report

Hi-res radiosonde shear

Vertical motion

- Ascent rate about 5 m/s
- Depends on initial mass; mass distribution spread causes ~ constant ascent rate spread with height
- Depends on balloon drag, perhaps enhanced by precip. loading, but no slow branch visible
- Depends perhaps on flow around balloon, but air stability dependence is expected small
- Ascent rate depends on cooling rate balloon, which is mainly an internal redistribution process in the balloon
- Asymmetric tropospheric ascent distribution, probably enhanced by cloud updrafts

100

80

60 dZ [m]

Houchi et al. 2015

10

5

20

40

Take home issues

Global NWP models

- Lack scales below 200 km
- Lack convection and associated wind downbursts
- Have a weak diurnal cycle
- Lack air-sea interaction and PBL structure
- Are rather neutral stability and show large direction errors
- Lack meridional flow
- Are rather inaccurate on the ocean eddy scale
- Are relative to the fixed earth rather than the moving water
- Lack substantial wind shear (on vertical km scale)

Regional models

 Need improved PBL (LLCJ), surface layer and moist convection parameterisations

What's next?

Aeolus

- Provides averages with a reasonable aspect ratio for vertical and horizontal structures (in clear air)
- Thus provides large-scale statistical properties of the tropand stratospheric flow in the 3D turbulence regime

Radar, lidar and acoustic techniques for the upper air

Back-up slides

Statistics of RSCAT Buoy Comparisons

	Nudged	DIRTH	NC	KNMI			
Spatial resolution	25	25	12.5	25			
Wind Speed (m/s)							
Number of data	3,184	3,184	1,675	2,334			
Bias	-0.07	-0.05	0.23	0.22			
Rms difference	1.16	1.11	1.11	0.98			
Correlation	0.938	0.943	0.944	0.954			
Wind Direction (deg.), wind speed > 3 m/s							
Number of data	2,813	2,813	1,490	2,064			
Bias	1.5	0.9	1.6	3.2			
Rms difference	25.6	23.7	20.4	19.4			
Correlation	0.962	0.967	0.977	0.977			

Climate extremes

PERCENTAGE OF HURRICANES >20 M/S IN ERA-INTERIM FOR SCAT WINDS > 20 M/S ACCUMULATED PDF OF SCATTEROMETER WINDS ABOVE 20 M/S

Trends in extreme wind speed

Trend in Wind Speed (in 0.1 m/s per 10 year)

- Controversy in trends of mean and extremes
- Wentz, F. J., and L. Ricciardulli, 2011, *Science*
- Young, I. R., S. Zieger, and A. V. Babanin, 2011: *Science*
- Local trends of 1 m/s are quite feasible
- Satellite, NWP and buoy sampling see different trends

Figure by Jason Keefer and Mark Bourassa, FSU

Climate trends 1999-2009

-0.6

 \succ

 \geq

 \geq

QSCAT ERA Buoy 0.2 Required accuracy is 0.1 m/s 0.1 per 10 years (GCOS) Trends sampled at buoys are 0 different from global trends Sampling: sampled by QSCAT or ERA Buoy<25</p> -0.1 Moored buoys are Buoy absolutely needed for -0.2 satellite calibration Moored buoys do not -0.3 represent the global climate (SH lacking) -0.4 Satellites can measure global climate change -0.5

38

Project ERA*

- KNMI produced ERA-interim U10S at full resolution
- ERA-interim is interpolated to scatterometer WVCs
- Difference PDFs between ERA and scatterometers are locally accumulated to correct ERA-interim; these identify:
 - NWP artefacts
 - > Lack of ocean current
 - > Excessive mixing in stable air (Randu)
 - > Lack of ocean eddy-scale structure (Chelton)
 - > Poor tropical dynamics, particularly convective scales
 - Scatterometer artefacts, presumably small