

Missing low-level drag causes climate model biases in jet streams, blocking and storm tracks.

Felix Pithan, Ted Shepherd, Guiseppe Zappa and Irina Sandu

felix.pithan@awi.de

zonally asymmetric

- North Atlantic jet/storm track too zonal
- Lack of European blocking events

zonally symmetric

- Extratropical jet displaced equatorwards
- Southern annular mode timescale too long

Orography shapes large-scale flow

Brayshaw et al. 2010

Jet location in idealised models

Biases affect climate projections

- © WI
- Larger wintertime jet shift in more biased models (Simpson and Polvani 2016)

Why does better resolution help?

- Higher horizontal resolution leads to improved large-scale flow (e.g. Manage (1970))
- better representation of Rossby wavebreaking (in past decades of modelling)
- better representation of orography (for current model resolutions, see Berckmanns et al. 2013)

Resolved and parameterized drag

drag scheme: Lott and Miller (1997)

Zappa et al. 2013, Track density bias against ERA-Interim

North Atlantic jet stream biases

CMIP5

ERA - Interim

-150 -110 -70 -30 30 70 110 150

500 hPa geopotential height (m)

North Atlantic jet stream biases

ERA - Interim

-150 -110 -70 -30 30 70 110 150

500 hPa geopotential height (m)

North Atlantic jet stream biases

ERA - Interim

-150 -110 -70 -30 30 70 110 150

500 hPa geopotential height (m)

Zappa et al. 2013, Track density bias against ERA-Interim

Storm track biases in AO phases

@W

Storm track biases in AO phases

HELMHOLTZ

@W

Understanding the impact

- bias: standing wave too long and propagation too zonal
- theory: both of these are to first order consistent with too high zonal winds (Held, 1983)
- impact: switching off drag leads to stronger zonal winds in mid-high troposphere over American continent

Zonal mean circulation

Zonal mean circulation

Annular mode timescale

HELMHOLTZ

Understanding the impact

- Additional drag projects on annular mode and leads to AM-like response (jet shift)
- drag is a negative feedback on jet shifts and thus shortens timescale
- improved jet position does not lead to improved timescales (Simpson et al. 2013)

- To what extent does low-level drag affect the climate change signal?
- What is the right amount of SGO drag? most CMIP5 models have too little, UM probably too much (van Niekerk et al. 2016)

How does drag affect cyclones?

- **O**NI
- cross-isobaric flow in (stable) boundary layers?

Svensson and Holtslag 2009

Beare 2007

Conclusions and implications

- The effect of switching off low-level drag in a single GCM resembles typical circulation biases of the CMIP5 ensemble
- This suggests that the extratropical circulation could be represented much better in coarse-resolution models if parameterisations are improved or tuned accordingly

