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Fig. 1. Hemispheric composites of baroclinicity (solid contours, displaying values of 0.5 and
0.6 days�1) and heat flux (dashed contours, displaying values of 10 and 20 K m s�1) for the
S (a), M (b) and N (c) regimes.
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Fig. 2. Composites of latitudinal profiles of relative angular momentum (a, in m2 s�1 and
averaged between 0 and 40�W), heat flux (b, in K m s�1 and averaged between 40 and 70�W)
and baroclinicity (c, in day�1 and averaged between 30 and 90�W) for the S (dotted), M
(dashed) and N (solid) regimes.
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Novak, Ambaum, Tailleux, JAS, 2015
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What determines the mean flow (thermal wind, zonal 
mean available potential energy) in the atmosphere? 

This is the title
MAARTEN H. P. AMBAUM and A.N. OTHER
Department of Meteorology, University of Reading, U.K.
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Ȧ = s A (11)
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ṡ = S�DA (14)

w0 = 0 ! k u0 = D (15)

DA0 = S (16)

s = growth rate µ ∂u

∂ z

µ �∂Tsfc

∂y

(17)
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Global mean energy transformations

James, 1990
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Lorenz cycle in zonally symmetric dry GCM

→mean flow gets (mainly) dissipated through 
eddy processes



What determines the eddy strength in the atmosphere? 
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FIG. 3. Results from the damping experiments. Instantaneous growth rate is plotted against damping parameter, Rs, as Rs is
gradually increased from 0 to 5 over a 3000-day integration. Graphs are labeled for damping profile (Fig. 2) and are for wavy
or zonal-mean basic state. The wavy basic state experiment 2 curve has three reference points marked on it, 1, 2, and 3. Here,
1 denotes the ‘‘undamped mode,’’ 2 the ‘‘damped baroclinic mode,’’ and 3 the ‘‘large-scale mode’’ referred to in the text.

mated from the growth of the s 5 0.5 rms vorticity
norm is plotted as a function of time throughout the
integration, or alternatively, as a function of the surface
damping rate, Rs, from 0 to 5 days21 (equivalent to a
damping timescale decreasing from infinity to 0.2 days).
The growth rate for the undamped mode is 0.41 day21

for the zonal-mean basic state and 0.38 day21 for the
wavy basic state. This rate of growth is steadily slowed
as Rs is increased. For the zonal-mean basic state, the
graph is a straight line up to at least Rs 5 2. For the
wavy basic state the growth rate varies sinusoidally as
the mode cycles through its quadrature phases, and the

reduction with Rs is not quite linear, but again it falls
steadily and remarkably quickly up to at least Rs 5 2.
The structure of the undamped mode is not changed

very much during this initial stage of the integration.
There is a reduction of surface amplitude as the bound-
ary layer damping is made stronger, but the horizontal
structure remains intact, and the period does not change.
The growth rate, however, is steadily reduced.
For the zonal-mean basic state, this situation is main-

tained precisely until the mode is neutralized at about
Rs 5 2. The horizontal structure of the perturbation does
not change significantly until its growth is extinguished.

Hall & Sardeshmukh, JAS, 1998

Friction and baroclinic instability 
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A heuristic model for eddy-mean flow interaction Marginal Stability and Predator-Prey Behaviour within Storm Tracks 3

The Ambaum-Novak model is a two-dimensional dynamical

system and therefore lacks the potential to become chaotic

(Hirsch and Smale 1974). Despite its simplicity, this model

behaves strikingly similarly to the observed storm tracks of

the North Atlantic and the idealised GCM storm track (and

to some extent the North Pacific). Namely, the frequency of

oscillations is predicted and observed to decrease with their

amplitude, even though the speed of oscillation increases with

amplitude, reflecting the nonlinear nature of the system. It is

additionally found that the observed system spends most time in

a linear regime, justifying the use of weakly nonlinear theories

of baroclinic instability when studying storm track dynamics.

Furthermore, a scaling analysis reveals that storm tracks are

marginally stable for the majority of the time, concurring with

Ambaum and Novak’s (2014) heuristics as well as with the

numerical experiments of Hall and Sardeshmukh (1988).

This paper is structured as follows. Section 2 briefly describes

the Ambaum-Novak model and some insightful properties of

its oscillations. Section 3 discusses the data used and Section

4 outlines the construction of a phase space plot from noisy

observations. Section 5 and Section 6 compare the qualitative and

quantitative properties of the Ambaum-Novak model to those of

the observed phase space plots in the North Atlantic. Section 7

then investigates whether the oscillating properties also apply to

other localised storm tracks and other measures of storm track

activity. The remaining section discusses the results and their

wider implications.

2. Nonlinear Oscillator Model

Ambaum and Novak (2014) proposed a two-dimensional model

to describe the relationship between baroclinicity and eddy heat

flux (as a measure of storm track activity) as follows:

ds
dt

= F � f, (1)

df
dt

= 2(s� s0)f, (2)

where s = �kdT/dy is baroclinicity which is proportional to

the negative meridional temperature gradient, and f = kl2v0T 0 is

scaled heat flux assumed to scale with the squared eddy amplitude,

(a)

(b)

Figure 1. Phase plots for Ambaum and Novak’s (2014) numerically integrated
Ambaum-Novak model for a) the instantaneous heat flux, f , and b) the
corresponding transformed heat flux, y = ln(f/F ), where F is the diabatic
forcing and s is the excess baroclinicity. The system was scaled to be non-
dimensional and parametrised using F = 1.0. The line thickness marks the relative
speed of the oscillations and time is in the clockwise direction.

with k being a constant and l the meridional wavenumber. s0

represents a constant eddy dissipation rate and F is a constant

diabatic forcing that restores baroclinicity. It is apparent that the

constant diabatic forcing is the steady-state value of heat flux and

the eddy dissipation rate is the steady-state value of baroclinicity.

Application of this steady-state system is the subject of a separate

study and will not be discussed here further.

Although the Ambaum-Novak model was initially constructed

based on heuristic arguments, an equivalent relationship can

be obtained by further truncation of the published models of

Thompson (1987) and Lorenz (1984), both of which are based

on simplifications of the primitive equations (Thompson 1987;

van Veen 2003). In Thompson’s (1987) model, the equation

for the mean shear flow is identical to Eq. (1), except for an

additional linear damping term. The four perturbation equations

of Thompson’s (1987) model can be written in form of a matrix

which, under vanishing �, is analogous in structure to Eq. (2).

Similarly, the equations of the squared perturbations in Lorenz’s

(1984) model can be combined to form an analogous equation

system to the Ambaum-Novak model. Although Lorenz’s (1984)

c� 2016 Royal Meteorological Society Prepared using qjrms4.cls
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Ȧ+— ·F =�DA (1)
u̇ = — ·F+lU (2)

U̇ = forcing� friction

U̇ = F �lU
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ẋ = d xy�lx (9)
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Marginal Stability and Predator-Prey Behaviour within Storm Tracks 7

(a) (b) (c)

(d) (e) (f)

Figure 5. Phase space plots for the observed instantaneous heat flux, f = kl2v0T 0 (a, b, c) and the transformed heat flux, y = ln(f/F ) (d, e, f), where F is the diabatic
forcing (in this case around F/kl2 = 28 K m s�1) and s is the excess baroclinicity. Line thickness marks the speed of oscillation and the shading is the 2D histogram
(showing values of 10, 50 and 100+ data points). The plots in the first column are averaged using a coarse filter (standard deviation: 1.1), while finer filters have been used
for the second and third columns (0.65 and 0.2 respectively). The radii of the grey ellipses in bottom left mark the standard deviations of the averaging Gaussian filter.

model and it reflects the spiky nature of the observed heat flux that

was previously noted by Swanson and Pierrehumbert (1997) and

Messori and Czaja (2013). Furthermore, it is apparent from the

thickness of the observed trajectories that the speed of oscillation

during the bursts in heat flux does increase with amplitude, as

predicted above.

However, there are also some marked differences between the

phase space plots of the data and the Ambaum-Novak model.

For example, the model does not contain any negative heat flux

values and thus its phase space plot can be very compressed near

zero for high amplitudes. On the other hand, the reanalysis data

show some negative values and less skewness along the heat flux

axis, especially for coarser smoothing. Although fine smoothing

produces a skewed shape that is more consistent with the model

phase space plot, it additionally reveals a more fine-scale structure

which is uncharacteristic of the model. Some of this fine-scale

structure most likely arises from sampling issues. As is shown

in Appendix A, too little or too much filtering seems to cause

a departure from the model, and there is an optimal size of the

smoothing filter, which produces consistent results.

In order to quantify whether the oscillatory properties of the

North Atlantic storm track are consistent with the predicted ones,

heat flux was transformed into the y variable. The corresponding

phase space plots equivalent to those discussed above are

displayed in Figure 5d, e and f, respectively. It should be noted that

the sparse negative values of heat flux were neglected due to the

natural logarithm in Eq. (3). The phase space plots exhibit similar

characteristics to that of the Ambaum-Novak model (Figure 1b),

though again more structure is apparent for the finest smoothing.

The shading shows that in all three cases, the system oscillates

around a single point where the data density is at its maximum.

The smallest amplitudes experience more regular oscillations

which concurs with the prediction that these oscillations should

be close to linear.

c� 2016 Royal Meteorological Society Prepared using qjrms4.cls
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Ȧ+— ·F =�DA (3)
u̇�— ·F = S (4)
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A heuristic model for eddy-mean flow interaction 

Corollary: 
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ḟ = s f �D f
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ṡ = S�DA (14)

w0 = 0 ! k u0 = D (15)

DA0 = S (16)

1

(eddy strength = mean source)

(mean flow is marginally stable)

“eddy saturation”



Control of ACC transport in eddy resolving model

Marshall et al, 2016

 

 

 

Fig. 2. Numerical calculations in an eddy-resolving channel model exploring the sensitivity of 
circumpolar volume transport and eddy energy to surface wind stress and bottom drag. A 
Snapshot of the relative vorticity revealing an energetic field of mesoscale eddies. B Eddy 
kinetic energy as a function of wind stress for different values of bottom drag. C Eddy kinetic 
energy as a function of bottom drag for different values of wind stress. D Volume transport as a 
function of wind stress for different values of bottom drag. E Volume transport as a function of 
bottom drag for different values of wind stress. 
 

A corollary is that eddy energy dissipation in the Southern Ocean, both through bottom drag (25) 
and generation of lee waves (24,27-29), may play a significant role in setting global ocean 
stratification, and hence heat and carbon content. In Fig. 3, we show the variation of potential 
temperature with depth at the north of our model channel: the potential temperature profile 
depends only weakly on surface wind stress but more strongly on bottom drag: higher bottom 
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Control of mean flow in dry atmosphere GCM

Figure 2: Overturning streamfunction integrated between 925 and 250 hPa
(colours) and thermal wind (black contours) defined as the di↵erence between
upper level (250-200 hPa) and low-level (925-700 hPa) zonal wind. Dashed
contours mark negative values. The tick marks are placed at values tested in
the experiment.

in the circulation arise for polar cooling. However, the thermal wind does not
seem to change much with intensity and the eddies are much more responsive.

As for the thermodynamic response, this seems to be in many ways opposite
for reduced friction and polar cooling, even though the circulation response
was very similar for these forcings. In the reduced friction case, most of the
tropopause is warmed and the static stability is reduced. The response to colder
polar temperatures is opposite.

- polar t anom - polar heating and cooling as expected BUT quite large
changes in static stability in polar regions - thermal rel. timescale still f(p)!
even though TR changes are barotropic - friction - thermal structure most likely
follows eddies - eddies increase with more diab forcing and so they try mix
temperature downgradient (though not completely) and stabilise the flow (by
vertical thermal fluxes, Schneider and Walker 06)

- jet latitude mainly driven by the eddy changes in both cases
- not much response in the tropics in neither circulation nor thermal struc-

ture.

5

(Note: all adjustments are made outside the tropics only)

Thermal wind (contours) and overturning str.fn (colours)



Control of mean flow in dry atmosphere GCM

Figure 3: Temperature anomaly
(colours) from the control run for
the extreme cases of friction changes
(with eddy frictional timescales of
2 and 0,5 days) and extreme cases
of the polar T anomaly changes (-
10 and 10K). Black contours denote
meridional heat fluxes, starting at
5 K m s�1 with an interval of 5
K m s�1. + ADD TROPOPAUSE
HEIGHT?.

Figure 4: Same as in figure 3X, but
for squared static stability anomaly
(colours) from the control run and
zonal wind anomalies (black con-
tours) from the control run. The
black contours have an interval of 1
m s�1 and dashed contours are neg-
ative.
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Heat flux (contours) & T anomaly (colours) 



Figure 5: Low-level heat flux, baroclinicity (as the maximum Eady growth rate),
meridional potential temperature gradient and squared static stability for the
experiments of only changing eddy friction (left) and experiments only changing
the polar T anomaly (right).

- N has opposite patterns of change away from storm tracks

3.3 Local Baroclinicity and Eddy Activity

It is apparent from figure 5 that over the range of eddy friction tested here
baroclinicity is more sensitive and eddies are less sensitive when compared to
the range of polar temperature anomalies. More specifically, eddy heat fluxes
increase in intensity for increased polar cooling but only slightly for reduced
friction. On the other hand, baroclinicity increases with increased eddy dissi-
pation and it is relatively insensitive to polar temperature anomalies. These
changes are therefore consistent with the baroclinic adjustment argument and
the steady state prediction of the Ambaum-Novak model, though it is apparent
that in the less sensitive cases, the quantities are not completely insensitive,
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Control of mean flow in dry atmosphere GCM

Heat flux

friction forcing

Eady growth rate

dT/dy

static stability



Figure 6: Baroclinicity (upper panels, 775 hPa) and heat flux (lower panels, 850
hPa) for all experiments. Both variables have been averaged in latitude over
the mixing region as defined by Schneider and Walker 2006, i.e. areas which
comprise heat fluxes that are above 30 % of the maximum.
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Control of mean flow in dry atmosphere GCM



Summary
• NH Storm Tracks appear to satisfy a simple two way 

exchange between eddies and mean flow. 

• Hadley cell response can be isolated/excluded by 
changing only extratropical parameters (in simplified agcm) 

• Eddy saturation hypothesis and “frictional control” 
hypothesis confirmed in simplified eddy-resolving ocean 
model and in AGCM 

• Extratropical eddy drag increase should correspond to 
jet increases and no response in eddies.
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