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Why modeling sea ice is a real challenge?

Point Barrow |
In this example: Large breaking event in Beaufort Sea , February-March 2013




“Seamless prediction”?

“What Earth system processes are needed, and what level of
complexity is required to further extend atmospheric predictive skill?”

“...Earth system modelling and assimilation as the way to improve further skill
in the 1-day to 1-year forecast range covered by the ECMWEF forecasts.”

“If a model cannot simulate a phenomena, it cannot predict that phenomena.”

“...climate prediction at the model resolutions and levels of complexity considered essential
for the most advanced and reliable representations of the climate system that technology and
our scientific understanding of the problem can deliver...”



" |ntense oceanic heat fluxes occur where sea ice is deforming.

Example from observation
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" |ntense atmospheric heat fluxes occur where sea ice opens.

Example from simulation
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Example from simulation
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Thermodynamical closing

Example from simulation
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Ice keel profile from
upward looking sonar
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Physical processes :
Sea ice drift and deformation

1. Observations from SAR-derived drift
2. Simulations from the neXtSIM sea ice model
3. Assimilation for operational forecasts



Observations from SAR-derived drift
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Level 1 product:
Drift

Level 2 product:
Deformation

Observations from SAR-derived drift
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“The sea ice thickness distribution is controlled

by localized deformation events”
(Hutchings and Hibler, 2008)

Ridging (a few hours)

Lead opening/closing (a few hours)
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“a change of the lead fraction by 1% could
cause a near-surface air temperature signal of up to 3.5K”
(Lipkes et al., 2008b)

undetermined

Willmes, S. and Heinemann, G. (2015)
“Pan-Arctic lead detection from MODIS
thermal infrared imagery”
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What is ne <t ?
A simple approach...

Mechanical modeling framework inherited from solid mechanics

Concept:

a

\[ Intact material J

External forces Progressive Brlttle behavy

Inspired from Amitrano et al. (1999)
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... to produce complex behaviors
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neXtSIM at a glance

Physics
/CIl\atm
TSUI’ ) .
= Dynamics: EB rheology Pyno f = Thermodynamics:
localize the deformation (] 2 ice categories, zero layer thermodynamics
simulate ice failure Mice (3 categories also available)
i) Tfreeze
Numerics

= Unstructured grid

= Fully Lagrangian

u, v

Adaptive mesh =  Finite element method
local re-meshing Pl1u,v
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Examples of mesh adaptation with BAMG

Conservation after the mesh adaptation
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Conservation after the mesh adaptation

=  Numerical diffusion is limited




Simulating cracks/leads in the Fram Strait
(with local remeshing)
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pan-Arctic configuration

Resolution: 7km

1 year simulation = 2days with a 2.7GHz Intel quad core i7 processor
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In neXtS1Vl, the ice motion looks like this...

/ I
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“the ice cover concentrates gradients in the forcing
wind field into narrow bands of intense shear” (Mac Phee et al., 2005)




Sea ice concentration and thickness simulated by net

ice concentration ice thickness
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Ice velocity

Ice Deformation

Sea ice drift and deformation simulated by net
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SAR (ENVISAT & RADARSAT) neXtSIM
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SAR (ENVISAT & RADARSAT) neXtSIM
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SAR (ENVISAT & RADARSAT)
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Winter mean drift

Model Observations Difference

Model Observations Observations minus Model

i " \... F‘., : - z
‘ ! — 10kmiday -

— 10km/day
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Error below 1 km/day in most of the area
Areas of large errors may be related to model/forcing short comings
Rampal et al (2016, The Cryosphere) for details
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Application for operational forecast

neXtSIM-F is a sea ice forecast
platform for the Kara Sea

Forced by ECMWF and ARC MFC
forecasts

Assimilates

— Concentration (AMSR2)

— Thin ice thickness (SMQS)
www.nersc.no/data/neXtSIM-F

2014/02/26 12:00
1 1 1 0 | 1 1 2
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http://www.nersc.no/data/nextsim-f

NERSC “mg,,, Nansen Environmental and Remote Sensing Center

- a non-profit climate and environmental research foundation founded in 1986.

A .
Home Research Projects Publications Education Data Outreach  About us

Data
neXtSIM-F
« Climate Modelling
« Arctic Sea Ice
; neXtSIM-F provides daily sea-ice forecasts for the Barents and Kara + Ocean Modelling
| ne L S | M F Seas . Algae Blooms and
Water Quality
+ Ocean Tracer
Contact Person: o Simulations
Philipp J. Griewank Animation . Satellite Radar Data

Department: + Sea-ice forecasts
Mohn-Sverdrup Center for Global Ocean Studies

and Operational Oceanography

clickferzanimation

Forecasts are generated daily using neXtSIM-F on a 3km Langrangian grid. neXtSIM-F is currently under
development and is based on the neXtSIM sea ice model which is currently being developed at NERSC.
The initial forecast conditions are computed by assimilating daily satellite thickness and concentration
fields from SMOS and AMSR2-ASI into the previous forecast. The model is forced with ECMWF and
TOPAZ forecasts of the atmosphere and ocean.

The latest forecast can be downloaded from the following ftp servenIftp:/lftp.nersc.nolpublPhiIipprorecasts I

Currently each forecast is represented by a single panel of plots depicting ice concentration, thickness,
and the volume fraction of ridged ice. The arrows show the drift over the last 24 hours. Soon more output
will be included, such as ice stress and drift convergence. If you are interested in a specific aspect feel
free to contact us.

We would like to to thank TOTAL who have helped fund the development of neXtSIM-F. Q

ToTAaL

31



OSI| SAF drift comparison

* Forecast evaluation
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thanks to weak persistence forecast.
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Mean drift speed matches well 33



neXtSIM-F vs TOPAZ
neXtSIM-F thickness is more heterogeneous than TOPAZ.
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Data assimilation of sea ice drift and deformation

Operational products: daily sea ice drift from Sentinel satellites
(DTU, Copernicus Marine Service)

'2016-02-28
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Data assimilation of sea ice drift and deformation

2016-02-27 ->28 Shear rate

From more than 500.000 ice drift vectors at 2 km spacing



Data assimilation of sea ice drift and deformation

Observed shear rate (/day) Simulated shear rate (/day)
27-30 March 2007 27-30 March 2007
- - 0.08
2000 v e 3

% | Z(\ NI/ . { ( 0.07

-, ‘\ ‘ A |

<< \ ‘

¥ <\ N s 006

0.05

0.04

! Y
Q % e \ i L \ ¢ _003
P 10.01
“Only damaged
sea ice deforms” Initial conditions

Damage field for the simulation

37



Conclusions and perspectives

Modelling Observations
e Coupling with the € > e« OQOperationalization
atmosphere (weather * Track the discontinuities
forecast, feedback,...) %\ * Link deformation, thickness
e Coupling with the ocean W and lead datasets
(inertial oscillation, 5
enhanced fluxes, waves...) MT f// £ e
. LM /
* Sub-grid scale g\ ’ zy//
parameterizations - -\( o
@%@% |
5 M g

Data assimilation
* Assimilation of sea ice drift and
deformation
* Assimilation of sea ice thickness
data (CrySat and SMOQOS)

List of the on-going projects on: www.nersc.no/group/sea-ice-modelling
www.nersc.no/group/data-assimilation
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Classical sea ice models parameterize most of the processes of interest.

* C(Classical continuous Eulerian model [ o g
with increased resolution

e

1000 km

1 km

1m
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Discrete sea ice models are maybe not suited for long simulations on large domains.

* Discrete model
with simplistic or realistic shapes

with a precise representation of the collisions ’

with refreezing/breaking of the floes

1000 km ,,

1 km

1m —>
1s 1h 1y
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neXtSIM reproduces the scaling invariance down to its nominal resolution

* Sea ice models should simulate and/or parameterize deformation scaling.

1 km

1m >
1ls 1h ly 42




Drag optimisation

* The momentum equation of sea ice is

Dw;
pih/]%z W) + AT, +14) - pih//f&ui B Wﬂ

Inertial term Internal force

Drag terms Coriolis force Ocean tilt term

* |n free drift we can ighore most terms, giving:

u; is ice velocity
U, iswatervelocity
u, is wind velocity

Nansen number




