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Strategy

Update July 2016: The Council has approved the new strategy for the period 2016-2025.

Goals by 2025

To provide forecast information needed to help save lives, protect infrastructure and promote
economic development in Member and Co-operating States through:

Research at the frontiers of knowledge to develop an integrated global model of the Earth system
to produce forecasts with increasing fidelity on time ranges up to one year ahead. This will tackle
the most difficult problems in numerical weather prediction such as the currently low level of
predictive skill of European weather for a month ahead.

Operational ensemble-based analyses and predictions that describe the range of possible
scenarios and their likelihood of occurrence and that raise the international bar for quality and
operational reliability. Skill in medium-range weather predictions in 2016, on average, extends to
about one week ahead. By 2025 the goal is to make skilful ensemble predictions of high-impact
weather up to two weeks ahead. By developing a seamless approach, we also aim to predict large-
scale patterns and regime transitions up to four weeks ahead, and global-scale anomalies up to a
year ahead.
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Reliability of precip forecasts over Europe in
the monthly forecasting system (T399-T255)




PV Gradient Across Tropopause

(d) ECMWF (e) Met Office (f) NCEP

Average ridge PV gradient (PVU/100 km)
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Figure 5. (a—c) Average ridge area and (d-f) the isentropic PV gradient flanking ridges as a function of forecast lead time
for ECMWE, Met Office, and NCEP. Black markers with error bars (standard errors) are averages over all winter seasons
with horizontal lines extending across all lead times from the analysis values. Colored lines are averages for the individ-
ual seasons where red is 2006/2007, cyan is 2007/2008, black is 2008/2009, blue is 2009/2010, magenta is 2010/2011,
green is 2011/2012, and orange is 2012/2013. Note (as an example) that a fraction of the Northern Hemisphere of 0.05 is
equivalent to an area of 1.275 x 107 kmZ.

Gray et al, GRL, 2014
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Amplitude error — what’s its cause?

» Advection on the jet flank leads to
a systematic accumulation of PV

* The induced circulation acts to damp
the Rossby wave

» Consistent with meridional
dispersion of wave activity

» Diffusion at small scales acts to
damp large scale waves via
systematic accumulation of PV
relative to the ridges and troughs




Multiple Flow Equilibria in the Atmosphere and Blocking'

JULE G. CHARNEY?
Massachusetts Institute of Technology, Cambridge 02139

JounN G. DEVORE?
University of California, Los Angeles 90024
(Manuscript received 22 September 1978, in final form 28 February 1979)

ABSTRACT

A barotropic channel model is used to study the planetary-scale motions of an atmosphere whose zonal
flow is externally driven. Perturbations are induced by topography and by a barotropic analogue
of thermal driving. The use of highly truncated spectral expansions shows that there may exist a mul-
tiplicity of equilibrium states for a given driving, of which two or more may be stable. In the case of
topographical forcing, two stable equilibrium states of very different character may be produced by the
same forcing: one is a “‘low-index’’ flow with a strong wave component and a relatively weaker zonal
component which is locked close to linear resonance; the other is a ‘‘high-index”" flow with a weak
wave component and a relatively stronger zonal component which is much farther from linear resonance.
It is suggested that the phenomenon of blocking is a metastable equilibrium state of the low-index,
near-resonant character. The existence of the two types of equilibria has been confirmed by numerical
integration of a grid-point model with many more degrees of freedom than the spectral model.

It has also been found spectrally and for a grid-point model that oscillations may occur when one
of the equilibrium states is stable for the lowest order spectral components but unstable for the next
higher order components. The oscillation apparently is due to a barotropic instability of the topographic
wave of the kind discussed by Lorenz and Gill.

Thermal forcing also produces multiple, stable equilibria in a spectral model but confirmation with a
grid-point model has so far not been obtained.
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Model can simulate “Blocked” and “Zona
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A Nonlinear Dynamical Perspective on Climate Prediction

T. N. PALMER
European Cenitre for Medium-Range Weather Forecasts, Shinfield Park, Reading, United Kingdom

(Manuseript received 7 October 1997, in final form 26 February 1998)

ABSTRACT
A nonlinear dynamical perspective on climate prediction is outlined, based on a treatment of climate as the
attractor of a nonlinear dynamical ysﬁem D wmb distinet quasl stationary regimes. "['h main application is
toward anthropogenic climate change, d as the resp of Dtoa 11 de imposed forcing f.

regimes. The simulated unforced
frequency of occurrence of both regimes is correct. However, the model
response to external forcing is completely incorrect.



How could we know that the response to forcing was
incorrect?
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Real World
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Look at reliability of initial value predictions.
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Probability of Occurrence
of Regime 1.
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Putting it all together
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One cannot be confident that the response to forcing is
correct if the corresponding reliability diagram is flat.



Increased resolution likely to be crucial for
ECMWEF's strategic goals.

Increased forecast reliability should be
considered a key measure for assessing
confidence In climate projections on longer
timescales

How can this be achieved and develop Earth-
System complexity?

Is there a cheaper way to represent Earth-
System complexity?



598

Stochastic Parametrization and
Model Uncertainty

Palmer, T.N., R. Buizza, F. Doblas-Reyes,
T. Jung, M. Leutbecher, G.J. Shultts,
M. Steinheimer, A. Weisheimer

Research Department

October 8, 2009
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Irreducible Uncertainty in
sub-grid representations
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Hannah Christensen

Stochastic parametrisation can also improve NCAR

climate model El Nino climatology
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Kristian Strommen TAS djf means (1979-2010)
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Primavera- Oxford

A Stochastic Package for EC-Earth
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Stochastic Parametrisation

n=—-mm n=m

\0 0O 0 0 0 « O O 0 0 0o o q O O 0 0 O 0 0 O 0 o o .:,//
o o o o o o o o o o o o o o o Qo o L o o o C Q o
Q -

o o0
o O

o

O 0 O

. - Rartially.Stachastic -

O ©0 0 O

Triangular ™ . - -
Truncation

o o o

o

o o 0O 0 o ( o 0O o o o 0

m=-+M

~-m +m

If parametrisation is partially stochastic, are we “over-engineering” our
dynamical cores, parametrisations and Earth-System modules by using double
precision bit-reproducible computations for scales near and below the
truncation scale?

Are we making inefficient use of computing resources (i.e. energy) that could
otherwise be used to increase resolution, better representation of physical
processes, ensemble size?



Vana et al 2016
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April 5, 2016
NVIDIA Unleashes Monster Pascal GPU Card at GTC16

Tiffany Trader

Earlier today (Tuesday) at the seventh-annual GPU Technology
Conference (GTC) in San Jose, Calif., NVIDIA revealed its first
Pascal-architecture based GPU card, the P100, calling it “the
most advanced accelerator ever built.” The P100 is based on the
MVIDIA Pascal GP100 GPU — a successor to the Kepler
GK110/210 — and is aimed squarely at HPC, technical
computing and deep learning workloads.

Packing a whopping ! i . . . o . o . L
point performance, t Flcatlng point is cited as another critical resource. The three sizes - half-precision, 5|ngle-prec15|on and

to date. And with 15 double-precision — all fit the IEEE standard. The peak speed of 3.2 teraflops double-precision
GPU that NVIDIA has L - . ) ) i
on TSMC's 16nm FInFET manufacturing process. performance doubles to 10.6 teraflops run_nl_ng in sln.gle-prjemsmn floating peint mode. Double it again,
and you get 21 peak teraflops of half-precision floating point performance — another first.

“GPUs have used half-precision for at least a dozen years as a storage mechanism to save space — for
textures — but we've never built an arithmetic pipeline to implement the 16-bit floating point directly,
we've always converted it,” Myland said. “What we've done is left it in its native size and then pair it

April 6, 2016
Europe’s Fastest Supercomputer to Get Pascal GPU Upgrade
Tiffany Trader and John Russell

Already Europe’s fastest supercomputer at 7.8
petaflops, the Piz Daint (hybrid CPU/GPU Cray
XC30) at the Swiss National Computing Center
(CSCS) will double its performance with a
massive upgrade that involves switching to
NVIDIA's newest Pascal GPU architecture and
merging with Piz Dora (Cray XC40), a smaller
CPU-based machine. The announcement was
made at GTC16 yesterday. Last November Piz
Daint placed seventh on the TOPS00 list.

Plans call for 5,200 NVIDIA K20xs to be replaced by 4,500 Pascal GPUs - which version hasn’t been
decided. Also, the Intel processors will be upgraded from Sandy Bridge to Haswell architecture. When
completed, the new combined system, all on a single fabric, will keep the Piz Daint name and provide



Intel Unveils Plans for Knights Mill, a Xeon Phi for Deep
Learning

Michael Feldman, Aug. 18, 2016, 1:33 a.m.

At the Intel Developer Forum (IDF) this week in San Francisco, Intel revealed it is working on a new Xeon Phi processor aimed
at deep learning applications. Diane Bryant, executive VP and GM of Intel's Data Center Group, unveiled the new chip, known

as Knights Mill, during her IDF keynote address on Wednesday.

!COMING 2017
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Reduced precision allows computations to proceed
more quickly, and data to be moved with less energy
overhead.



Stochastic Parametrisation/
Earth System Complexity

Half precision?
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More accurate “weather forecasts” with less precision
Reading Spectral Model

Diiben and Palmer, 2014. Monthly Weather Review
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The representation of physical and
biogeochemical processes in Earth-
System Modules are highly
parametrised and hence uncertain.

Could computations in Earth-System
modules be performed at half
precision?



Schematics of the land surface

snow on
high interception ground & low
wvegetation reservoir vegetation
low bare snow under
vegetation v ground high vegetation

Dave Macleod, Peter Duben,
Andrew Dawson
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Clim Dyn (2016) 46:3865-3882
DOI 10.1007/500382-015-2809-5
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The reliability of single precision computations in the simulation
of deep soil heat diffusion in a land surface model

Richard Ha*ar*ve'y"2 * Diana L. \’ersegh:f'l

Abstract Climate models need discretized numerical
algorithms and finite precision arithmetic to solve their
differential equations. Most efforts to date have focused
on reducing truncation errors due to discretization effects,
whereas rounding errors due to the use of floating-point
arithmetic have received little attention. However, there are
increasing concerns about more frequent occurrences of
rounding errors in larger parallel computing platforms (due
to the conflicting needs of stability and accuracy vs. per-
formance), and while this has not been the norm in climate
and forecast models using double precision, this could
change with some models that are now compiled with
single precision, which raises questions about the valid-
ity of using such low precision in climate applications.
For example, processes occurring over large time scales
such as permafrost thawing are potentially more vulner-
able to this issue. In this study we analyze the theoretical
and experimental effects of using single and double preci-
sion on simulated deep soil temperature from the Canadian
LAnd Surface Scheme (CLASS), a state-of-the-art land
surface model. We found that reliable single precision tem-
peratures are limited to depths of less than about 2025 m
while double precision shows no loss of accuracy to depths
of at least several hundred meters. We also found that, for
a given precision level, model accuracy deferiorates when
using smaller time steps, further reducing the usefulness

of single precision. There is thus a clear danger of using
single precision in some climate model applications, in
particular any scientifically meaningful study of deep soil
permafrost must at least use double precision. In addition,
climate modelling teams might well benefit from paying
more attention to numerical precision and roundoff issues
to offset the potentially more frequent numerical anomalies
in future large-scale parallel climate applications.

Keywords Floating-point arithmetic - Numerical
precision - Single precision arithmetic - Double precision
arithmetic - Climate models - Permafrost - Land surface
models - Deep soil processes

1 Introduction

Climate models use sophisticated numerical algorithms
to solve the complex primitive equations of atmospheric
and oceanic motions. These algorithms contain two well-
known and unavoidable sources of errors: fruncation
errors (because computations must be completed in a finite
time), which are caused by replacing the continuous time
and space differentials of the original field equations with
finite increments, and rounding errors (because computer
memory is not infinite), which are caused by replacing
real numbers of infinite precision with finite-sized com-
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Level 3 soil temperature [C]
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What is the real information content in
each of the billions of bits that
represent variables in a
weather/climate model?
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Stephen Jeffress

Entropy: H[X(r)]=—2ﬁ[log(ﬁ)]

Bitwise information content at a single forecast time:

I,(At)=H[X(t+An)]

—poH [ Xt +AD) 1 b(1)=0]- pH[ X (1 +Ar) | b(1) =1]

GO

Total bitwise information content: J, = ff,:_(&r)dm
0
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Conclusions

Forecast reliability is poor beyond medium range.

Improving forecast reliability is crucially important for both weather
and climate communities

Increased resolution likely to be top priority for ECMWEF to reach
strategic goals

Given the inherent stochasticity of the sub-grid closure problem, we
are very likely wasting computer resources integrating all model
variables with 64 bits

Earth-System modules are highly uncertain

It is possible that small-scale variables in the dynamical core and
many Earth-System modules could be computed at half-precision,
making use of new mixed-precision machine-learning chips.

Information theory could play an important role in determining the
real information content in model variables.



